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Abstract

In this paper we prove a lower bound on the computable measure of sets with high random-
ness deficiency with respect to two computable measures. We extend this result to computable
metric spaces and univseral uniform tests. We prove that synchronized oscillation of algorithmic
thermodynamic entropies with respect to different measures must occur.

1 Introduction

In a previous paper, a lower bound was proved on the computable measure of sets with high random-
ness deficiency. The deficiency of randomness of an infinite sequence α ∈ {0, 1}∞ with respect to a
computable measure P over {0, 1}∞ is defined to be D(α|P ) = supn− logP (α[0..n])−K(α[0..n]).
The term K is the prefix free Kolmogorov complexity.

Theorem. [Eps22] For computable measures µ and nonatomic λ over {0, 1}∞ and n ∈ N,
λ{α : D(α|µ) > n} > 2−n−K(n,µ,λ)−O(1).

This paper generalizes this result, in the context of overlap between the randomness deficiency
function with respect to two different computable probability measures.

Theorem. For computable measures µ, ρ and nonatomic λ over {0, 1}∞ and n ∈ N,
λ{α : D(α|µ) > n and D(α|ρ) > n} > 2−n−K(n,µ,ρ,λ)−O(1).

The O(1) term is dependent solely on the choice of the universal Turing machine. With a bit of
work, the theorem can be proved for potentially uncomputable λ that has finite mutual information
with the halting sequence. With an O(logm) loss of precision, the above theorem can be generalized
to m probability measures. It is possible to see this theorem being referenced in proofs of more
sophisticated theorems. This theorem is of note because it factors out the mutual information with
the halting sequence term that is so prevalent in the resultant theorems from similar proofs to the
ones found in the paper. Lemma 3 is a reworking of Lemma 2 in [Eps23a], Lemma 5 is a reworking
of Lemma 4 in [Eps23b], Theorem 2 is a reworking of Theorem 3 in [Eps22], and Theorem 8 is a
reworking of Theorem 8 in [Eps23c]. The tight bounds of the main theorem derived from lemmas
with looser bounds is achieved through relativization.

In Appendix A, a more direct, accesible proof that doesn’t rely on the mutual information
with the halting sequence is given. In addition, it uses uniformly computable probability measures.
However the results are incompatible with the generalization to computable metric spaces and
uncomputable λ.
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1.1 Universal Uniform Tests

The study of randomness of computable metric spaces can be seen in the works of [HR09, G2́1].
These spaces are important because physical random phenomena are modeled using infinite ob-
jects, and not the Cantor space. For definitions in this introduction, we use [HR09]. A computable
metric space X is a metric space with a dense set of ideal points on which the distance function is
computable. A computable probability is defined by a computable sequence of converging points in
the corresponding space of Borel probability measures,M(X ), over X . A uniform test T takes in a
description of a probability measure µ and produces a lower computable µ test, with

∫
X T

µdµ ≤ 1.
There exists a universal test, t, where for any uniform test T there is a cT ∈ N where cT t > T .
We extend the main theorem of this paper to computable metric spaces and universal uniform
tests. The O(1) constant is dependent solely on the universal Turing machine. A program for a
computable probability measure is an algorithm that produces a fast Cauchy sequence converging
to that probability measure in the measure space M(X ). A program for the computable metric
space X is an algorithm can compute the distance measure between its dense ideal points. The
K(n, λ, µ, ρ,X ) term is the length of the shortest program that computes n, and a program for λ,
µ, ρ, and X . The following theorem generalizes Theorem 9 in [Eps23c].

Theorem. Given computable probability measures µ, ρ, and λ, non-atomic λ, over a computable
metric space X and universal uniform test t, for all n,
λ({α : tµ(α) > 2n and tρ(α) > 2n}) > 2−n−K(λ,µ,ρ,X )−K(n,λ,µ,ρ,X )−O(1).

1.2 Thermodynamics

The above results can be applied to thermodynamics. Classical thermodynamics is the study of
substances and changes to their properties such as volume, temperature, and pressure. Substances,
such as a gas or a liquid, is modeled as a point in a phase space. The phase space, X , is modeled
by a computable metric space, [HR09], and a volume measure µ, is modeled by a computable (not
necessarily probabilistic) positive measure over X . The dynamics are modeled by a one dimensional
transformation group Gt, indexed by t ∈ R. Due to Louville’s theorem, the dynamics are measure-
preserving, where µ(GtA) = µ(A), for all Borel sets A ⊆ X .

The micro-state of a system contains the information of the entire physical state. For example,
the microstate of a system of N molecules is a point

(q1, . . . , q3N , p1, . . . , p3N ) ∈ R6N

where qi are the position coordinates and pi are the momentum coordinates. The set of states,
R3N is a computable metric space. To model the entropy of the state, we use slight variant to
algorithmic fine-grained entropy Hµ in [Gac94], using symbol Hµ. The subscript µ represents the
volume measure in which the entropy term is defined. This entropy measure captures the level
of disorder of the state. Continuing the example above, if all the particles are at rest, then the
thermodynamic entropy of the state of

(q1, . . . , q3N , 0, . . . , 0)

is expected to be very low. In this paper, we prove the occurrence joint fluctuations of algorithmic
thermodynamic entropies with respect to two different measures. The following theorem generalizes
Theorem 12 in [Eps23c].
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Theorem. Let L be the Lebesgue measure over R, X be a computable metric space, and µ and ν be
computable measures over X . Let α ∈ X with finite mutual information with the halting sequence.
For transformation group Gt acting on X , there are constants c1 and c2 with

1. L{t ∈ [0, 1] : Hµ(Gtα) < logµ(X )− n and Hν(Gtα) < log ν(X )− n} > 2−n−K(n)−c1.

2. L{t ∈ [0, 1] : Hµ(Gtα) < logµ(X )− n or Hν(Gtα) < log ν(X )− n} < 2−n+c2.

2 Conventions

The function K(x|y) is the conditional prefix Kolmogorov complexity. m(x|y) is the conditional
algortihmic probability. The mutual information between two strings x, y ∈ {0, 1}∗, is I(x : y) =
K(x)+K(y)−K(x, y). For probability p over N, randomness deficiency is d(a|p, b) = b− log p(a)c−
K(a|〈p〉, b) and measures the extent of the refutation against the hypothesis p given the result a
[G2́1]. d(a|p) = d(a|p, ∅). The amount of information that the halting sequence H ∈ {0, 1}∞ has
about a ∈ {0, 1}∗, conditional to y ∈ {0, 1}∗ is I(a;H|y) = K(a|y)−K(a|y,H). I(a;H) = I(a;H|∅).
We use <+f to denote <f+O(1) and <logf to denote <f+O(log(f+1)). In addition

∗
<f ,

∗
>f denote

< f/O(1), > f/O(1). The term
∗
=f denotes

∗
<f and

∗
>f . Stochasticity is Ks(a|b) = min{K(Q|b) +

3 log max{d(a|Q, b), 1} : Q has finite support and a range in Q}. Ks(a|b) < Ks(a) + O(log K(b)).
For a mathematical statement A, let [A] = 1 if A is true and [A] = 0, otherwise. The chain rule
gives K(x, y) =+ K(x|y,K(y)) + K(y). The randomness deficiency of α ∈ {0, 1}∞ with respect
to computable continuous probability measure P is D(α|P ) = supn− logP (α[0..n]) −K(α[0..n]).
The following definition is from [Lev74] .

Definition 1 (Information) For infinite sequences α, β ∈ {0, 1}∞, their mutual information is
defined to be I(α :β)= log

∑
x,y∈{0,1}∗ 2I(x:y)−K(x|α)−K(y|β).

It is easy to see that I(f(α) : β) <+ I(α : β) + K(f). There are many proofs in the literature
that non-stochastic numbers have high mutual information with the halting sequence. One such
detailed proof is in [Eps21].

Lemma 1 Ks(x) < I(x;H) +O(K(I(x;H))).

Lemma 2 ([Eps22]) For partial computable f , I(f(x) : H) <+ I(x;H) + K(f).

Theorem 1 ([Ver21, Lev74, Gei12]) Prµ(I(α : H) > n)
∗
< 2−n+K(µ).

3 On Exotic Sets of Natural Numbers

Lemma 3 For computable probabilities p, q over N, D⊂N, |D| = 2s, s < maxa∈D min{d(a|p),d(a|q)}+
I(D;H) +O(K(I(D;H), p, q, s)).

Proof. We relativize the universal Turing machine to 〈s, p, q〉. Let Q be a probability measure
that realizes Ks(D), with d = max{d(D|Q), 1}. Let F ⊆ N be a random set where each element
a ∈ N is selected independently with probability cd2−s, where c ∈ N is chosen later. E[p(F )] =
E[q(F )] ≤ cd2−s. Furthermore

E[Q({G : |G| = 2s, G ∩ F = ∅})] ≤
∑
G

Q(G)(1− cd2−s)2
s
< e−cd.
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Thus finite W ⊂ N can be chosen such that p(W ) ≤ 4cd2−s, q(W ) ≤ 4cd2−s, and Q({G : |G| =
2s, G∩W = ∅}) ≤ e2−cd. D∩W 6= ∅, otherwise, using the Q-test, t(G) = ecd−1 if (|G| = 2s, G∩W =
∅) and t(G) = 0 otherwise, we have

K(D|Q, d, c) <+ − logQ(D)− (log e)cd

(log e)cd <+ − logQ(D)−K(D|Q) + K(d, c)

(log e)cd <+ d+ K(d, c),

which is a contradiction for large enough c. Thus there is an a ∈ D ∩W , where

K(a) <+ min{− log q(a),− log p(a)}+ log d− s+ K(d) + K(Q)

s <+ min{d(a|p),d(a|q)}+ Ks(D).

Making the relativization of 〈s, p, q〉 explicit, and using Lemma 1 results in

s <+ min{d(a|p),d(a|q)}+ Ks(D) +O(K(s, p, q))

s < max
a∈D

min{d(a|p),d(a|q)}+ Ks(D) +O(K(s, p, q))

s < max
a∈D

min{d(a|p),d(a|q)}+ I(D;H) +O(K(I(D;H), s, p, q))).�

4 On Exotic Sets of Reals

Let Ω =
∑
{2−‖p‖ : U(p) halts} be Chaitin’s Omega, Ωn ∈ Q≥0 be be the rational formed from the

first n bits of Ω, and Ωt =
∑
{2−‖p‖ : U(p) halts in time t}. For n ∈ N, let bb(n) = min{t : Ωn <

Ωt}. bb−1(m) = arg minn{bb(n− 1) < m ≤ bb(n)}. Let Ω[n] ∈ {0, 1}∗ be the first n bits of Ω.

Lemma 4 For n = bb−1(m), K(Ω[n]|m,n) = O(1).

Proof. For a string x, let BB(x) = inf{t : Ωt > 0.x}. Enumerate strings of length n, starting
with 0n, and return the first string x such that BB(x) ≥ m. This string x is equal to Ω[n], otherwise
let y be the largest common prefix of x and Ω[n]. Thus BB(y) = bb(‖y‖) ≥ BB(x) ≥ m, which
means bb−1(m) ≤ ‖y‖ < n, causing a contradiction. �

The following lemma, while lengthy, is a series of straightforward application of inequalities.

Lemma 5 For computable probabilities P , Q, over {0, 1}∞, Z ⊂ {0, 1}∞, |Z| = 2s,
s < maxα∈Z min{D(α|P ),D(α|Q)}+ I(〈Z〉 : H) +O(K(s, P,Q) + log I(〈Z〉;H)).

Proof. We relativize the universal Turing machine to s, which can be done due to the precision
of the theorem. Let Zn = {α[0..n] : α ∈ Z} and m = arg minm |Zm| = |Z|. Let n = bb−1(m) and
k = bb(n). Let p and q be probabilities over {0, 1}∗, where p(x) = [‖x‖ = k]P (x) and 〈p〉 = 〈k, P 〉
and let q(x) = [‖x‖ = k]Q(x) and 〈q〉 = 〈k, P 〉. Using D = Zk, Lemma 3, relativized to k, produces
x ∈ Zk, where

s < min{d(x|p),d(x|q)}+ I(Zk;H|k) +O(K(I(Zk;H|k), q, p|k))

< max
α∈Z

min{D(α|P ),D(α|Q)}+ K(Zk|k) + K(k)−K(Zk|k,H) +O(K(I(Zk;H|k), q, p|k)).

< max
α∈Z

min{D(α|P ),D(α|Q)}+ K(Zk|k) + K(k)−K(Zk|k,H) +O(K(P,Q) + log I(Zk;H|k)).
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Since K(k) <+ n+ K(n), by the chain rule,

K(Zk|k) + K(k)

<+K(Zk|k,K(k)) + K(K(k)|k) + K(k)

<K(Zk, k) +O(log n)

<K(Zk) +O(log n).

So

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ K(Zk)−K(Zk|k,H) +O(log n+ K(P,Q) + log I(Zk;H|k))).

Since K(k|n,H) = O(1), K(Zk|H) <+ K(Zk|k,H) + K(n),

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Zk;H) +O(log n+ K(P,Q) + log I(Zk;H|k)).

Furthermore since I(Zk;H|k) + K(k) < I(Zk;H) +O(log n),

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Zk;H) +O(log n+ K(P,Q)) +O(log I(Zk;H)).

By Lemma 4, K(Ω[n]|Zk) <+ K(n) so by Lemma 2,

n <log I(Ω[n];H) <log I(Zk;H) + K(n) <log I(Zk;H).

The above equation used the common fact that the first n bits of Ω has n−O(log n) bits of mutual
information with H. So

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Zk;H) +O(K(P,Q) + log I(Zk;H)).

By the definition of mutual information I between infinite sequences

I(Zk;H) <+ I(Z : H) + K(Zk|Z) <log I(Z : H) + K(k|Z).

Now m is simple relative to Z and by Lemma 4, Ω[n] is simple relative to m and n. Furthermore
k is simple relative to Ω[n]. Therefore K(Zk|Z) <+ K(n). So

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Z : H) +O(log n) +O(K(P,Q) + log I(Z;H))

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Z : H) +O(K(s, P,Q) + log I(Z;H))).

�
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5 Asymptotic Properties of Randomness Deficiency

Theorem 2 For computable measures µ, ρ and nonatomic λ over {0, 1}∞ and n ∈ N,
λ{α : D(α|µ) > n and D(α|ρ) > n} > 2−n−K(n,µ,ρ,λ)−O(1).

Proof. We first assume not. For all c ∈ N, there exist computable nonatomic measures µ, ρ
λ, and there exists n, where λ{α : D(α|µ) > n and D(α|ρ) > n} ≤ 2−n−K(n,µ,λ)−c. Sample
2n+K(n,µ,ρ,λ,ρ)+c−1 elements D ⊂ {0, 1}∞ according to λ. The probability that all samples β ∈ D
has D(β|µ) ≤ n or D(β|ρ) ≤ n is∏

β∈D
λ{D(β|µ) ≤ n or D(β|ρ) ≤ n} ≥

(1− |D|2−n−K(n,µ,λ,ρ)−c) ≥
(1− 2n+K(n,µ,λ,ρ)+c−12−n−K(n,µ,λ,ρ)−c) ≥ 1/2.

Let λn,c be the probability of an encoding of 2n+K(n,µ,λ)+c−1 elements each distributed according
to λ. Thus

λn,c(Encoding of 2n+K(n,µ,λ,ρ)+c−1 elements β, each having D(β|µ) ≤ n or D(β|ρ) ≤ n) ≥ 1/2.

Let v be a shortest program to compute 〈n, µ, ρ, λ〉. By Theorem 1, with the universal Turing
machine relativized to v,

λn,c({γ : I(γ : H|v) > m})
∗
< 2−m+K(λn,c|v) ∗< 2−m+K(n,K(n,µ,λ,ρ),c,λ|v) ∗< 2−m+K(c).

Therefore,

λn,c({γ : I(γ : H|v) > K(c) +O(1)}) ≤ 1/4.

Thus, by probabilistic arguments, there exists α ∈ {0, 1}∞, such that α = 〈D〉 is an encoding of
2n+K(n,µ,ρ,λ)+c−1 elements β ∈ D ⊂ {0, 1}∞, where each β has D(β|µ) ≤ n or D(β|ρ) ≤ n and
I(α : H|v) <+ K(c). By Lemma 5, relativized to v, there are constants d, f, g ∈ N where

m = log |D| < max
β∈D

min{D(β|µ, v),D(β|ρ, v)}+ 2I(D : H|v) + dK(m|v) + fK(µ|v) + gK(ρ|v)

m < max
β∈D

min{D(β|µ),D(β|ρ)}+ K(v) + 2I(D : H|v) + dK(m|v) + fK(µ|v) + gK(ρ|v)

<+ n+ K(n, µ, λ, ρ) + dK(m|v) + 2K(c) + (f + g)O(1). (1)

Therefore:

m = n+ K(n, µ, ρ, λ) + c− 1

K(m|v) <+ K(c).

Plugging the inequality for K(m|v) back into Equation 3 results in

n+ K(n, µ, λ, ρ) + c <+ n+ K(n, µ, λ, ρ) + 2K(c) + dK(c) + (f + g)O(1)

c <+ (2 + d)K(c) + (f + g)O(1).

This result is a contradiction for sufficiently large c solely dependent on the universal Turing
machine. �
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Corollary 1 For computable measures {µi}mi=1 and nonatomic λ over {0, 1}∞ and n ∈ N,
λ{α :

∧m
i=1 D(α|µi) > n} > 2−n−K(n,µ,ρ,λ)−O(logm).

Theorem 2 can be extended to incomputable λ, which can be accomplished using a stronger version1

of Theorem 1. The term 〈λ〉 ∈ {0, 1}∞ represents any encoding of λ that can compute λ(x{0, 1}∞)
for x ∈ {0, 1}∗ up to arbitrary precision. Let I(λ : H) = inf〈λ〉 I(〈λ〉 : H).

Corollary 2

• For computable measures µ, ρ, potentially uncomputable nonatomic λ over {0, 1}∞ and n ∈ N,
λ{α : D(α|µ) > n and D(α|ρ) > n} > 2−n−K(n)−O(K(µ,ρ)+I(λ:H)).

• For measures µ and ρ over {0, 1}∞, nonatomic λ, computable µ, ρ, if for every c ∈ N, there
is an n ∈ N, where λ{α : D(α|µ) > n and D(α|ρ) > n} < 2−n−O(K(n))−c, then I(λ : H) =∞.

6 Computable Probability Spaces

The second main result of this paper uses computable metric spaces and computable probability
measures from [HR09]. Some constructs need changes, which we present in the later section. But
in this section we show the definitions, lemmas, and theorems that are directly taken from [HR09].
If a theorem or lemma is presented without a proof, then it can be found in [HR09]

Definition 2 A computable metric space consists of a triple (X ,S, d), where

• X is a separable complete metric space.

• S is an enumerable list of dense ideal points S in X .

• d is a distance metric that is uniformly computable over points in S.

The complexity of a metric space X is K(X ), the smallest program that computes d.

For x ∈ X , r ∈ Q>0 a ball is B(x, r) = {y : d(x, y) < r}. The ideal points induce a sequence of
enumerable ideal balls Bi = {B(si, rj) : si ∈ S, rj ∈ Q>0}. A sequence of ideal points {xn} ⊆ Y
is said to be a fast Cauchy sequence if d(xn, xn+1) < 2−n for all n ∈ N. A point x is computable
there is a computable fast Cauchy sequence converging to x. The complexity of such a point,
K(x) is the length of the smallest program that computes a fast Cauchy sequence converging to
it. The complexity of a sequence of uniformly computable points Y = {xi} is K(Y ), the length of
the smallest program that maps i to a fast Cauchy sequence converging to xi. Each computable
function f between computable metric spaces X and Y has an algorithm A such that if f(x) = y
then for all fast Cauchy sequences −→x for x, A(−→x ) outputs an encoding of a fast Cauchy sequence
for y. The complexity of a computable function f is K(f), the length of the shortest program to
compute such an algorithm.

Definition 3 Lower computable functions f ∈ F have algorithms that enumerate {(Bi, ri)}, where
Bi is an ideal ball and ri ∈ Q>0, and f(x) = sup{ri : x ∈ Bi}.

1Theorem 1 can be extended to Theorem 10, and this stronger form is used in the proof. The proof follows
analogously, except m = n+K+ zK(µ, ρ) + I(λ : H)) for some constant z. In addition, the relativization variable v
is set to (n,K(n)).
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The computable metric space of all Borel probability measures over X is M(X ). If X is separable
and compact then so is M(X ). The ideal points of M(X ) are D, the set of probability measures
that are concentrated on finitely many points with rational values. The distance metric on M(X )
is the Prokhorov metric, defined as follows.

Definition 4 (Prokhorov metric)

π(µ, ν) = inf
{
ε ∈ R+ : µ(A) ≤ ν(Aε) for Borel set A

}
,

where Aε = {x : d(x,A) < ε}.

Theorem 3 Given a probability measure µ ∈M(X ), the following are equivalent.

1. µ is computable.

2. µ(Bi1 ∪ · · · ∪Bik) is lower semi-computable uniformly in 〈i1, . . . , ik〉.

3.
∫
dµ : F → R≥0 is lower semi-computable.

Definition 5

1. A constructive Gδ-set U is a set of the form
⋂
n Un where {Un} is a sequence of uniformly

r.e. open sets. The complexity of U is, K(U), the size of the smallest program that uniformly
enumerates {Un}.

2. A computable probability space is a pair (X , µ), where X is a computable metric space and µ
is a Borel probability measure on X .

3. Let (X , µ) be a computable probability space and Y a computable metric space. A function
f : Df ⊂ (X , µ)→ Y is almost computable if it is computable on a constructive Gδ-set (Df )
of µ-measure one.

4. A morphism of computable probability spaces Q : (X , µ) → (Y, ν) is an almost computable
measure-preserving function Q : DQ ⊂ X → Y, where µ(Q−1(A)) = ν(A) for all Borel sets
A. An isomorphism (Q,R) is a pair of morphisms such that Q ◦ R = id on R−1(DQ) and
R ◦Q = id on Q−1(DR).

5. A binary representation of a computable probability space (X , µ) is a pair (δ, µδ) where µδ is
a computable probability measure on {0, 1}∞ and δ : ({0, 1}∞, µδ) → (X , µ) is a surjective
morphism such that, calling δ−1(x) the set of expansions of x ∈ X:

• There is a dense full-measure constructive Gδ-set D of points having a unique expansion.

• δ−1 : D → δ−1(D) is computable.

• (δ, δ−1) is an isomorphism.

Theorem 4 Every computable probability space (X , µ) has a binary representation.

Definition 6 Given a probability measure µ ∈ M(X ), a µ-randomness test is a µ-constructive
function T ∈ F , such that

∫
Tdµ ≤ 1. A uniform randomness test is a constructive function T

from M(X ) to F such that
∫
Tµdµ ≤ 1.

Theorem 5

1. Let µ be a probability measure. For every µ-randomness test t, there is a uniform randomness
test T :M(X )→ F with T (µ) = .5t.

2. There is a universal uniform randomness test, that is a uniform test t such that for every
uniform test T , there is a constant c > 0 with t > cT .
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7 Multi Binary Representation

This paper introduces a new concept that is needed in the first theorem: a multi binary represen-
tation. While a binary representation is a mapping from one computable probability space to the
Cantor space, a multi binary representation maps three computable probability spaces to Cantor
spaces, each sharing the same mapping.

Definition 7 A set A is almost decidable with respect to probability measures (µ, ν, ρ) if there are
two. r.e. open sets U and V such that U ⊂ A, V ⊆ AC , U ∪ V is dense and has full µ, ν, and
ρ measure. We say the elements of a sequence {Ai} are uniformly almost decidable with respect
to (µ, ν, ρ) if there are two sequences {Ui} and {Vi} of uniformly r.e. sets satisfying the above
conditions. The complexity of the sequence, K({Ai}) is the length of the smallest program the
uniformly computes the two sequences K({Ui}) and K({Vi}).

The following theorem modifies [HR09] to account for the complexities of the involved terms.

Theorem 6 On a computable metric space, every dense constructive Gδ-set G has a dense sequence
of uniformly computable points Y , where K(Y ) <+ K(G,X ).

Proof. Let A = ∩iUi where Ui is constructive uniformly in i. Let B be an ideal ball: we construct
a sequence of ideal balls {B(i)}i such that B(i+ 1) ⊂ Ui ∩ B(i). Put B(0) = B. If B(i) has been
constructed, as Ui is dense B(i)∩Ui is a non-empty open set, so we can find some ball B′ ⊆ B(i)∩Ui.
B(i + 1) is obtained dividing the radius of B′ by 2. By completeness of the space, ∩iB(i) is non-
empty. It is a singleton {x} where x is a computable point belonging to A ∩ B. Everything is
uniform in the ideal ball B, the number {Bk}k of ideal balls gives a constructive sequence {xi} of
uniformly computable points with xk ∈ A ∩ Bk. The program to uniformly compute Y = {xk}
requires a program to compute Gδ and a program to compute X , so K(Y ) <+ K(G,X ).

Lemma 6 There is a sequence of {rn} of uniformly computable reals such that {B(si, rn)}i,n is a
basis of uniformly almost computable decidable balls, relative to (µ, ν, ρ). Furthermore K(rn) <+

K(µ, ν, ρ,X ).

Proof. Define U〈i,k〉 = {r ∈ R>0 : µ(B(si, r)) < µ(B(si, r))+1/k}. By computability of µ, this is a

r.e. open subset of R>0 uniformly in 〈i, k〉. Let W〈i,k〉 = {r ∈ R>0 : ν(B(si, r)) < ν(B(si, r))+1/k},
which is also an r.e. open subset of R>0. Let X〈i,k〉 = {r ∈ R>0 : ρ(B(si, r)) < ρ(B(si, r)) + 1/k},
which is also an r.e. open subset of R>0. They both are dense in R>0. The spheres Sr =
B(si, r) \B(si, r) are disjoint for different radii and µ, ν, and ρ are finite, so the set of r for which
µ(Sr) ≥ 1/k, ν(Sr) ≥ 1/k, or ρ(Sr) > 1/k is finite. Let V〈i,j〉 = R>0 \ {d(si, sj)} be a dense r.e.
open set, uniformly in 〈i, j〉. Thus we get the dense constructive Gδ-set

G =
⋂
〈i,k〉

U〈i,k〉 ∩
⋂
〈i,k〉

W〈i,k〉 ∩
⋂
〈i,j〉

X〈i,j〉 ∩
⋂
〈i,j〉

V〈i,j〉

This set can be constructed given X , and programs for µ, ν, and ρ, with K(G) <+ K(X , µ, ν, ρ).
Then by Theorem 6, contains a sequence {rn} of uniformly computable reals numbers which is dense
in R>0. This sequence has complexity K({rn}) <+ K(X , µ, ν, ρ). For any si and rn, B(si, rn) is
almost decidable, relative to (µ, ν, ρ). �

Definition 8 A multi probability space (X , µ, ν, ρ) is a computable metric space X and three com-
putable Borel probability measures, µ, ν, and ρ over X .

9



Definition 9 A multi binary representation of a multi probability space (X , µ, ν, ρ) is a tuple
(δ, µδ, νδ, ρδ) where µδ, νδ, and ρδ are computable probability measures on {0, 1}∞ and δ : ({0, 1}∞, µδ)→
(X , µ) , δ : ({0, 1}∞, νδ)→ (X , ν), and δ : ({0, 1}∞, ρδ)→ (X , ρ) are surjective morphisms. Denot-
ing δ−1(x) to be the set of expansion of x ∈ X:

• There is a dense full-measure constructive Gδ-set D of points have a unique expansion.

• δ−1 : D → δ−1(D) is computable.

• (δ, δ−1) is an isomorphism.

• K(δ, µδ, νδ, ρδ) <
+ K(X , µ, ν, ρ).

Definition 10 We fix computable probability measures µ, ν, and ρ and their computable repre-
sentations. We denote B(si, rn) by Bk where k = 〈i, n〉 and rn is the sequence defined in 6. Let
Ck = X \B(si, rn). For w ∈ {0, 1}∗, the cell Γ(w) is defined by Γ(ε) = X, Γ(w0) = Γ(w) ∩ Ci and
Γ(w1) = Γ(w) = ∩Bi, where ε is the empty word and i = ‖w‖. This is an almost decidable set,
uniformly in w. Γ(w) can be uniformly computed by a program that uniformly computes {rn}, and
therefore of size K(Γ(·)) <+ K({rn}) <+ K(X , µ, ν, ρ).

Theorem 7 Every multi probability space (X , µ, ν, ρ) has a multi binary representation.

Proof. We construct an encoding function b : D → {0, 1}∞, a decoding function δ : Dδ → X,
and show that δ is a multi binary representation, with b = δ−1. Let D = ∩iBi ∪ Ci. The set D is
a full-measure constructive Gδ-set, with K(D) <+ K(X , µ, ν, ρ). Define the computable function
b : D → {0, 1}∞ with b(x)i = 1 if x ∈ Bi and b(x)i = 0 if x ∈ Ci. Let x ∈ D: ω = b(x) is also
characterized by {x} = ∩iΓ(ω0...i−1). b can be computed from Γ(·), thus K(b) <+ K(Γ(·)) <+

K(X , µ, ν, ρ). Let µδ, νδ, and ρδ be the morphisms µ ◦ b−1, ν ◦ b−1, and ρ ◦ b−1, respectively. The
complexity of the three morphisms is not more than the complexity of the computable function b,
and thus <+ K(X , µ, ν, ρ).

Let Dδ be the set of binary sequences ω such that ∩iΓ(ω0...i−1) is a singleton. The decoding
function δ : Dδ → X is defined by

δ(ω) = x if ∩i Γ(ω0...i−1) = {x}.

The next steps are to prove the δ is a surjective morphism, and the proof for this follows identically
to the proof of Theorem 5.1.1 in [HR09]. The to compute this function this function, one needs to
compute Γ(·). Thus K(δ) <+ K(Γ(·)) <+ K(X , µ, ν, ρ). �

8 Universal Uniform Tests

Lemma 7 Let Q : D ⊂ X → Y be a morphism of computable probability spaces (X , µ) and (Y, ν),

with universal tests tµ and tν . If x ∈ X and tµ(x) < ∞, then Q(x) is defined and tν(Q(x))
∗
<

tµ(x)2K(Q,µ).

Proof. The proof is a slight modification to Proposition 6.2.1 in [HR09]. So, assuming tµ(x) <∞,
then x is a random point then x ∈ D, because due to Lemma 6.2.1 in [HR09], every random point
lies in every r.e. open set of full measure, and D is an intersection of full-measure r.e open sets.
Thus Q(x) is defined.

10



Let A be any algorithm lower semi-computing the function tν ◦Q : D → R∞≥0. This algorithm
can be converted into a lower computable function fA : X → R∞≥0 by feeding all finite prefixes of
fast Cauchy sequences to Q and enumerating all resultant outputted ideal balls and seeing which
outputted ideal balls are in the ideal balls of those enumerated by tν . Since µ(D) = 1,

∫
tν ◦Qdµ

equals
∫
fA dµ. Thus K(fA ) <+ K(Q, ν). As Q is measure-preserving,

∫
tν ◦ Qdu =

∫
tνdν ≤ 1.

Hence fA is a µ-test, with fA
∗
< tµ2K(Q,ν). Thus tν(Q(x)) = fA (x)

∗
< tµ(x)2K(Q,ν). �

Claim 1 We recall that the deficiency of randomness of an infinite sequence α ∈ {0, 1}∞ with
respect to a computable measure (P, p) over {0, 1}∞ is defined to be

D(α|(P, p), x) = log sup
n

m(α[0..n]|x)/p·P (α[0..n]).

We have D(α|(P, p)) = D(α|(P, p), ∅). By [G2́1], 2D is a lower-computable (P, p)-test, in that

p

∫
{0,1}∞

2D(α|(P,p))dP (α) = O(1).

Thus since t(P,p) is a universal uniform test that takes the computable point P as a parameter,
and assuming p is computable, by Corollary 4, t(P,p) can enumerate lower (P, p)-tests and give
them an oracle can compute the measure cylinders p·P (x) for x ∈ {0, 1}∗. Thus for computable p,

t(P,p)(α)
∗
>2D(α|(P,p)).

Theorem 8 Given computable probability measures µ, ρ, and λ, non-atomic λ, over a computable
metric space X and universal uniform test t, for all n,
λ({α : tµ(α) > 2n and tρ(α) > 2n}) > 2−n−K(λ,µ,ρ,X )−K(n,λ,µ,ρ,X )−O(1).

Proof. We fix the algorithmic descriptions of λ, µ, ρ, and X to be one that minimizes K(λ, µ, ρ,X ).
By Theorem 4, fix a multi binary representation (δ, λδ, µδ, ρδ) for multi probability space (X , λ, µ, ρ).
Note that δ is a measure-preserving transform, where λ(A) = λδ(δ

−1(A)) for all Borel sets A. Due
to Lemma 7 and the fact that K(δ, λδ, µδ, ρδ|p) = O(1), where p is a shortest program that computes
(λ, µ, ρ,X ).

X =λ({β : tµ(β) ≤ 2n or tρ(β) ≤ 2n})
=λδ(δ

−1({β : tµ(β) ≤ 2n or tρ(β) ≤ 2n}))
<λδ(δ

−1({β : tµδ(δ
−1(β)) < 2n+K(δ,µ)+O(1) or tµρ(δ

−1(β)) < 2n+K(δ,ρ)+O(1)}))
=λδ(δ

−1({β ∈ δ({α : tµδ(α) < 2n+K(δ,µ)+O(1) or tρδ(α) < 2n+K(δ,ρ)+O(1)})})
=λδ(δ

−1(δ({α : tµδ(α) < 2n+K(δ,µ)+O(1) or tρδ(α) < 2n+K(δ,ρ)+O(1)}))
<λδ({α : tµδ(α) < 2n+K(λ,µ,ρ,X )+O(1) or tρδ(α) < 2n+K(λ,µ,ρ,X )+O(1)}). (2)

The K(δ, µ) is the size of the smallest program that computes both δ and µ, and similarly for
K(δ, ρ). From Equation 2, and Claim 1, we get,

X <λδ{α : D(α|µδ) <+ n+ K(λ, µ, ρ,X ) or D(α|ρδ) <+ n+ K(λ, µ, ρ,X )}.

From Theorem 2, we get

X <1− 2−n−K(λ,µ,ρ,X )−K(n+K(λ,µ,ρ,X ),λδ,µδ,ρδ)−O(1)

<1− 2−n−K(λ,µ,ρ,X )−K(n+K(λ,µ,ρ,X ),p)−O(1)

<1− 2−n−K(λ,µ,ρ,X )−K(n,‖p‖,p)−O(1)

<1− 2−n−K(λ,µ,ρ,X )−K(n,λ,µ,ρ,X )−O(1).
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9 Computable Measure Theory

In thermodynamics, the measure function representing the volume is not necessarily a probability
measure. Thus the results of Section 6 needs to be extended to nonnegative measures of arbitrary
size to prove a result about thermodynamics. Let (R≥0,Q≥0, dR) be the computable metric space
where R≥0 is the complete separable metric space and nonnegative rationals Q≥0 consists of the
ideal points. The distance function is dR(x, y) = |x− y|, which is obviously computable over Q≥0.
The space of nonnegative Borel measures over a computable metric space is the space M(X ) =
M(X)×R≥0, the product space of the space of probability measures of X , M(X ), with the space
of nonnegative reals. The distance function of M is dM((µ,m), (ν, n)) = max{π(µ, ν), dR(n,m)},
where π is the Prokhorov metric (see Definition 4). The ideal points of M(X ) is the set of all finite
points with nonnegative rational values. This definition is different from the ideal points inM(X )
in that they don’t have to sum to 1. The computable measures of M(X ) are its constructive points,
with respect to a fast Cauchy description. From this definition, the results of Theorem 3 apply
directly to arbitrary measures µ ∈M(X ).

Corollary 3 Given an arbitrary measure µ ∈M(X ), the following are equivalent.

1. µ is computable.

2. µ(Bi1 ∪ · · · ∪Bik) is lower semi-computable uniformly in 〈i1, . . . , ik〉.

3.
∫
dµ : F → R≥0 is lower semi-computable.

For the Cantor space {0, 1}∞ with the standard metric space structure, the ideal balls are the
cylinders x{0, 1}∞, for x ∈ {0, 1}∗.

Corollary 4 If a measure (µ,m) ∈ M({0, 1}∞) is computable and m is computable, then the
cylinders are uniformly computable.

Definition 11

1. A computable measure space is a pair (X , µ), where X is a computable metric space, and
µ is a computable Borel nonnegative measure on X . A computable dual measure space is
a tuple (X , µ, ν) where X is a computable metric space, and µ and ν are computable Borel
nonnegative measures on X .

2. Let (X , µ) be a computable measure space and Y a computable metric space. A function
f : Df ⊂ (X , µ)→ Y is almost computable if it is computable on a constructive Gδ-set (Df )
of measure µ(X ).

3. A morphism of computable measure spaces Q : (X , µ) → (Y, ν) is an almost computable
measure-preserving function Q : DQ ⊂ X → Y. An isomorphism (Q,R) is a pair of mor-
phisms such that Q ◦R = id on R−1(DQ) and R ◦Q = id on Q−1(DR).

4. A dual binary representation of computable measure space (X , µ, ν) is a tuple (δ, µδ, νδ) where
µδ and νδ are computable probability measures on {0, 1}∞ and δ : ({0, 1}∞, µδ) → (X , µ)
and δ : ({0, 1}∞, νδ) → (X , ν) are surjective morphisms. Denoting δ−1(x) to be the set of
expansion of x ∈ X:

12



• There is a dense full-measure constructive Gδ-set D of points have a unique expansion.

• δ−1 : D → δ−1(D) is computable.

• (δ, δ−1) is an isomorphism.

Corollary 5 Every computable dual measure space (X , µ, ν) has a dual binary representation.

This corollary has a virtually identical proof to Theorem 7.

Definition 12 Given an arbitrary measure µ ∈ M(X ), a µ-randomness test is a µ-constructive
function T ∈ F , such that

∫
Tdµ ≤ 1. A uniform randomness test is a constructive function T

from M(X ) to F such that
∫
Tµdµ ≤ 1.

Theorem 9

1. Let µ be a measure. For every µ-randomnness test t, there is a uniform randomness test
T :M(X )→ F with T (µ) = .5t.

2. There is a universal uniform randomness test, that is a uniform test t such that for every
uniform test T , there is a constant c > 0 with t > cT .

10 Algorithmic Thermodynamic Entropy

Algorithmic thermodynamic entropy, H, is formally defined as well as the transform group Gt

representing dynamics. Theorem 10 is a property about conservation of information with halting
sequence.

Definition 13 (Algorithmic Thermodynamic Entropy) Given a computable metric space X
and a nonnegative measure µ ∈M(X ) the algorithmic thermodynamic entropy is Hµ(α) = − log tµ(α).

Definition 14 (Mutual Information with the Halting Sequence) An encoding of a fast Cauchy
sequence −→x is 〈−→x 〉 ∈ {0, 1}∞, with 〈−→x 〉 = 〈x1〉〈x2〉 . . . . Each xi ∈ S is an ideal point, and 〈xi〉 is
its order in the enumeration of S. Each point x ∈ X has a certain mutual information with the
halting sequence I(x : H) = inf{I(〈−→x 〉 : H) : 〈−→x 〉 is a fast Cauchy sequence for x}.

Definition 15 (Computable Transformation Group) A one dimensional transformation group
Gt, parameterized by t ∈ R over a measure space (X , µ) where each Gt is a homeomorphism of X
onto itself, where Gt(Gs(x) = Gt+s(x). And Gtx is continuously simultaneously in x and t. G is
measure preserving, where µ(Gt(A)) = µ(A), for all Borel sets A. Furthermore there is a program
that when given an encoding of a fast Cauchy sequence of t ∈ R and x ∈ X , outputs an encoding of
a fast Cauchy sequence of Gtx.

Theorem 10 ([Ver21, Lev74]) Let Pρ, be a family of probability distributions over {0, 1}∞, in-
dexed by ρ ∈ {0, 1}∞. Assume that there is a Turing machine T such that for all ρ ∈ {0, 1}∞
computes Pρ having oracle access to ρ. By “compute” we mean all the measures of the cylinder sets
Pρ(x{0, 1}∞), can be computed, uniformly in x ∈ {0, 1}∗. Then there is a constant cT > 0 solely
dependent on T such that

Pρ{γ : I(〈γ, ρ〉 : H) > m} < 2I(ρ:H)−m+cT .

13



Lemma 8 Let Q : D ⊂ X → Y be a morphism of computable measure spaces (X , µ) and (Y, ν),
with universal tests tµ and tν . There is a c ∈ N with the following properties. If x ∈ X and

tµ(x) <∞, then Q(x) is defined and tν(Q(x))
∗
< ctµ(x).

The proof for this lemma is identical to that of the proof of Lemma 7.

Definition 16 We update randomness deficiency to arbitrary measures. The deficiency of ran-
domness of an infinite sequence α ∈ {0, 1}∞ with respect to a computable measure µ over {0, 1}∞
is defined to be

D(α|µ, x) = log sup
n

m(α[0..n]|x)/µ(α[0..n]).

D(α|P ) = D(α|P, ∅). Using the same reasoning as Claim 1, if µ({0, 1}∞) is computable, then

tµ(α)
∗
> 2D(α|µ).

Theorem 11 (Synchronized Oscillation of Thermodynamic Entropies) Let L be the Lebesgue
measure over R, (X , µ, ν) be a dual computable measure space with computable µ(X) and ν(X),
and α ∈ X , with finite I(α : H). For transformation group Gt acting on X , there is a constant c
with L{t ∈ [0, 1] : Hµ(Gtα) < logµ(X )− n and Hν(Gtα) < log ν(X )− n} > 2−n−K(n)−c.

Proof. We first assume not. There exists transformation group Gt and computable dual measure
space (X , µ, ν) with U = logµ(X ), V = log ν(X ) and there exists α ∈ X with finite I(α : H) such
that for all c ∈ N, there exists n, where

L({t ∈ [0, 1] : Hµ(Gtα) < U − n and Hν(Gtα) < V − n}) < 2−n−K(n)−c

L({t ∈ [0, 1] : n− U < log tµ(Gtα) and n− V < log tν(Gtα)}) < 2−n−K(n)−c.

We sample 2n+K(n)+c−1 elements F by choosing a time t uniformly between [0, 1]. The probability
that all samples β ∈ F have tµ(Gβα) ≤ n− V or tν(Gβα) ≤ n− V is

|F |∏
i=1

L{t ∈ [0, 1] : log tµ(Gtα) ≤ n− U or log tν(Gtα) ≤ n− V )}

≥(1− |F |2−n−K(n)−c)

≥(1− 2n+K(n)+c−12−n−K(n)−c)

≥1/2.

Let ({0, 1}∞,Γ) be the Cantor space with the uniform measure. The binary representation (see
Definition 5) creates an isomorphism (φ, φ−1) of computable probability spaces between the spaces
({0, 1}∞,Γ) and ([0, 1], L). It is the canonical function φ(γ) = 0.γ. Thus for all Borel sets A ⊆ [0, 1],
Γ(φ−1(A)) = L(A). Since {t ∈ [0, 1] : log tµ(Gtα) ≤ n− U or log tν(Gtα) ≤ n− V } is closed,

L{t ∈ [0, 1] : log tµ(Gtα) ≤ n− U or log tν(Gtα) ≤ n− V }
=Γ{γ ∈ {0, 1}∞ : log tµ(Gφ(γ)α) ≤ n− U or log tν(Gφ(γ)α) ≤ n− V }.

So

1/2 ≤
|F |∏
i=1

Γ{γ ∈ {0, 1}∞ : log tµ(Gφ(γ)α) ≤ n− U or log tν(Gφ(γ)α) ≤ n− V }.
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Let (δ, µδ, νδ) be a dual representation for the computable dual measure space (X , µ, ν). Thus µδ
and νδ are computable (not necessarily probability) measures over {0, 1}∞. By Lemma 8, there is
a c′ > 0, where

|F |∏
i=1

Γ{γ ∈ {0, 1}∞ : log tµδ(δ
−1(Gφ(γ)α)) ≤ n− U + c′

or log tνδ(δ
−1(Gφ(γ)α)) ≤ n− V + c′} ≥ 1/2.

Let f : {0, 1}∞ × {0, 1}∞ → {0, 1}∞, where f(γ, 〈
−→
ζ 〉) = δ−1(Gφ(γ)ζ). Note, f(γ, 〈

−→
ζ 〉) can be

undefined when tµ(Gφ(γ)ζ) = ∞ or tν(Gφ(γ)ζ) = ∞, because the morphism δ−1 is only proven to
be defined on a constructive Gδ set of full measure which includes µ and ν random points. Let
ξ = 〈−→α 〉 be an encoding of a fast Cauchy sequence −→α such that I(ξ : H) < ∞. The sequence ξ is
guaranteed to exist because the assumption of the theorem statement. So

|F |∏
i=1

Γ{γ ∈ {0, 1}∞ : log tµδ(f(γ, ξ)) ≤ n− U + c′ or log tνδ(f(γ, ξ)) ≤ n− V + c′} ≥ 1/2.

By Definition 16, (and also updating c′)

|F |∏
i=1

Γ{γ ∈ {0, 1}∞ : D(f(γ, ξ)|µδ) ≤ n− U + c′ or D(f(γ, ξ)|νδ) ≤ n− V + c′} ≥ 1/2.

Let µδ(α) = µδ(α)2−U and νδ(α) = νδ(α)2−V , which are computable probability measures over
{0, 1}∞.

|F |∏
i=1

Γ{γ ∈ {0, 1}∞ : D(f(γ, ξ)|µδ) ≤ n+ c′ or D(f(γ, ξ)|νδ) ≤ n+ c′} ≥ 1/2.

Let Γn+c be a computable distribution over the product of 1 + 2n+K(n)+c−1 independent prob-
ability measures over {0, 1}∞, encoding into a {0, 1}∞ in the standard way. The first probability
distribution gives measure 1 to ξ and the last 2n+K(n)+c probability measures are the uniform
distribution Γ over {0, 1}∞. So

Γn+c(Encoding of 1 + 2n+K(n)+c−1 elements with the first encoded sequence being ξ

and the rest of encoded sequences β has D(f(β, ξ)|µδ) ≤ n+ c′

or D(f(β, ξ)|νδ) ≤ n+ c′) ≥ 1/2.

Let n∗ = 〈n,K(n)〉. There is an infinite sequence η = 〈n,K(n), c〉ξ and a Turing machine T , such
that T computes Γn+c when given oracle access to η. By Theorem 10, with the universal Turing
machine relativized to n∗, and folding the constants together,

Γn+c({γ : I(γ : H|n∗) > m})
<Γn+c({γ : I(〈γ, η〉 : H|n∗) >+ m})
∗
<2−m+I(η:H|n∗)+cT

∗
<2−m+K(n,K(n),c|n∗)+I(ξ:H|n∗)+cT

∗
<2−m+K(c).
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Therefore,

Γn,c({γ : I(γ : H|n∗) >+ K(c)}) ≤ 1/4.

Thus, by probabilistic arguments, there exists κ ∈ {0, 1}∞, such that κ = 〈D, ξ〉, where D ⊂ {0, 1}∞
and |D| = 2n+K(n)+c−1 and each β ∈ D has D(f(β, ξ)|µδ) ≤ n + c′ or D(f(β, ξ)|νδ) ≤ n + c′ and
I(κ : H|n∗) <+ K(c). Thus since K(f(D, ξ)|κ, n∗) = O(1) we have I(f(D, ξ) : H|n∗) <+ I(κ :
H|n∗) <+ K(c). By Lemma 5, relativized to n∗, on the set D′ = f(D, ξ) and probabilities µδ and
νδ, there exists constant d ∈ N where (with the complexities of µδ and νδ folded into the additive
constants)

m = log |D′| <+ max
β∈D′

min{D(β|µδ, n∗),D(β|νδ, n∗)}+ 2I(D′ : H|n∗) + dK(m|v)

m <+ max
β∈D′

min{D(β|µδ),D(β|νδ)}+ K(n) + 2I(D′ : H|n∗) + dK(m|n∗)

<+ max
β∈D′

min{D(β|µδ),D(β|νδ)}+ K(n) + 2K(c) + dK(m|v)

<+n+ K(n) + dK(m|v) + 2K(c). (3)

Therefore:

m = n+ K(n) + c− 1

K(m|n∗) <+ K(c). (4)

Plugging Equation 4 back into Equation 3 results in

n+ K(n) + c <+ n+ K(n) + 2K(c) + d(K(c) +O(1))

c <+ (2 + d)K(c) + dO(1).

This result is a contradiction for sufficiently large c solely dependent (X , µ, ν,G), and the uni-
versal Turing machine. �

Corollary 6 Let L be the Lebesgue measure over R, (X , µ, ν) be a computable dual measure space,
α ∈ X , with finite I(α : H). For transformation group Gt acting on X , there is a constant c with
L{t ∈ [0, 1] : tµ(Gtα) > 2n and tν(Gtα) > 2n} > 2−n−K(n)−c.

Lemma 9 ([Eps23c]) Let L be the Lebesque measure over R, (X , µ) be a computable measure
space, and α ∈ X . For transformation group Gt acting on X , there is a constant c where L{t ∈
[0, 1] : Hµ(Gtα) < Hµ(α)−m} < 2−m+c.

Corollary 7 Let L be the Lebesgue measure over R, and (X , µ, ν) be a dual computable measure
space, and α ∈ X with finite I(α : H). For transformation group Gt acting on X , there are constants
c1 and c2 with

1. L{t ∈ [0, 1] : Hµ(Gtα) < logµ(X )− n and Hν(Gtα) < log ν(X )− n} > 2−n−K(n)−c1.

2. L{t ∈ [0, 1] : Hµ(Gtα) < logµ(X )− n or Hν(Gtα) < log ν(X )− n} < 2−n+c2.

16



A Alternative Proof

In this appendix, a more direct proof is given of Theorem 2. It is a straightforward modification to
Theorems 4, 5, and 6 in [Eps22]. The results do not allow a corollary for uncomputable λ with finite
mutual information with the halting sequence. In addition, it is incompatible with the application
of Theorem 2 to computable metric spaces.

A sampling method A is a probabilistic function that maps an integer N with probability 1 to a
set containing N different strings. Let P = P1, P2, . . . be a sequence of measures over strings. For
example, one may choose P1 = P2 . . . or choose Pn to be the uniform measure over n-bit strings.
A conditional probability bounded P -test is a function t : {0, 1}∗ × N → R≥0 such that for all
n ∈ N and positive real number r, we have Pn({x : t(x|n) ≥ r}) ≤ 1/r. If P1, P2, . . . is uniformly
computable, then there exists a lower-semicomputable such P -test t that is “maximal” (i.e., for
which t′ ≤ O(t) for every other such test t′). We fix such a t, and let dn(x|P ) = log t(x|n).

Lemma 10 Let P and Q be two probability measures on strings and let A be a sampling method.
For all integers N , there exists a finite set S ⊂ {0, 1}∗ such that P (S) ≤ 32/N , Q(S) ≤ 32/N , and
with probability strictly more than 0.99: A(N) intersects S.

Proof. We show that some possibly infinite set S satisfies the conditions, and thus, some finite
subset also satisfies the conditions due to the strict inequality. We use the probabilistic method: we
select each string to be in S with probability 8/N and show that the three conditions are satisfied
with positive probability. The expected value of P (S) and Q(S) is 8/N . By the Markov inequality,
the probability that P (S) > 32/N is at most 1/4 and the probability that Q(S) > 32/N is at most
1/4. For any set D containing N strings, the probability that S is disjoint from D is

(1− 8/N)N < e−8.

Let Q be the measure over N -element sets of strings generated by the sampling algorithm A(N).
The left-hand side above is equal to the expected value of

Q({D : D is disjoint from S}).

Again by the Markov inequality, with probability greater than 3/4, this measure is less than
4e−8 < 0.01. By the union bound, the probability that at least one of the conditions is vio-
lated is less than 1/4 + 1/4 + 1/4. Thus, with positive probability a required set is generated, and
thus such a set exists. �

Theorem 12 Let P = P1, P2 . . . and Q = Q1, Q2 . . . be a two uniformly computable sequence of
measures on strings and let A be a sampling method. There exists c ∈ N such that for all n:

Pr

(
max

a∈A(2n)
min{dn(a|P ),dn(a|Q)} > n− c

)
≥ 0.99.

Proof. We now fix a search procedure that on input N finds a set SN that satisfies the conditions
of Lemma 10. Let t′(a|n) be the maximal value of 2n/64 such that a ∈ S2n . By construction, t′ is
a computable probability bounded test for both P and Q, because Pn({x : t′(x|n) = 2`}) ≤ 2−`−1,
and thus Pn(t′(x|n) ≥ 2`) ≤ 2−`−1 + 2−`−2 + . . . and similarly for Q. With probability 0.99, the
set A(2n) intersects S2n . For any number a in the intersection, we have t′(x|n) ≥ 2n−6, thus by the
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optimality of t and definition of d, we have dn(a|P ) > n−O(1) and dn(a|Q) > n−O(1). �

An incomplete sampling method A takes in a natural number N and outputs, with probability
f(N), a set of N numbers. Otherwise A outputs ⊥. f is computable.

Corollary 8 Let P = P1, P2 . . . and Q = Q1, Q2 . . . be two uniformly computable sequences of
measures on strings and let A be an incomplete sampling method. There exists c ∈ N such that for
all n:

Pr
D=A(n)

(
D 6=⊥ and max

a∈D
min{dn(a|P ),dn(a|Q)} ≤ n− c

)
< 0.01.

Let µ = µ1, µ2, . . . be a uniformly computable sequence of measures over infinite sequences.
Similar way as for strings in the introduction, the randomness deficiency Dn(ω|µ) for sequences
ω is defined using lower-semicomputable functions {0, 1}∞ × N → R≥0. A continuous sampling
method C is a probabilistic function that maps, with probability 1, an integer N to an infinite
encoding of N different sequences.

Theorem 13 Let µ = µ1, µ2, . . . and ν = ν1, ν2, . . . be two uniformly computable sequences of
measures over infinite sequences. Let C be a continuous sampling method. There exists c ∈ N
where for all n:

Pr

(
max

α∈C(2n)
min{Dn(α|µ),Dn(α|ν)} > n− c

)
≥ 0.98.

Proof. For D ⊆ {0, 1}∞, Dm = {ω[0..m] : ω ∈ D}. Let g(n) = arg minm PrD=C(n)(|Dm| <
n) < 0.01 be the smallest number m such that the initial m-segment of C(n) are sets of n strings
with probability > 0.99. g is computable, because C outputs a set of distinct infinite sequences
with probability 1. For probability ψ over {0, 1}∞, let ψm(x) = [|x| = m]ψ({ω : x @ ω}). Let

µg = µ
g(1)
1 , µ

g(2)
2 , . . . and νg = ν

g(1)
1 , ν

g(2)
2 , . . . be two uniformly computable sequences of discrete

probability measures and let A be a discrete incomplete sampling method, where for random seed
ω ∈ {0, 1}∞, A(n, ω) = C(n, ω)g(n) if |C(n, ω)g(n)| = n; otherwise A(n, ω) =⊥. So Pr[A(n) =⊥] <
0.01. There exists a constant c ∈ N such that,

Pr

(
max

α∈C(2n)
min{Dn(α|µ),Dn(α|ν)} ≤ n− c

)
≤ Pr
Z=C(2n)

(
(|Zg(n)| < 2n) or (|Zg(n)| = 2n and max

α∈Z
min{Dn(α|µ),Dn(α|ν)} ≤ n− c

)
≤ Pr
D=A(2n)

(
D =⊥ or (D 6=⊥ and max

x∈D
min{dn(x|µg),dn(x|νg)} ≤ n− c)

)
<0.01 + 0.01 (5)

≤0.02,

where Equation 5 is due to Corollary 8. �

Theorem 14 Let λ = λ1, λ2, . . . , µ = µ1, µ2, . . . , and ν = ν1, ν2, . . . be three uniformly computable
sequences of measures over infinite sequences. Each λn is non-atomic. There is a constant c ∈ N,
dependent on µ, ν and λ, where for all n ∈ N, λn

{
α : Dn(α|µ) > n− c and Dn(α|ν) > n− c

}
>

2−n−1.
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Proof. We define the continuous sampling method C, where on input n, randomly samples n
elements from λn. Let dn = λn{α : min{Dn(α|µ),Dn(α|ν)} > n − c}, where c is the constant in
Theorem 13. By that theorem,

Pr

(
max

α∈C(2n)
min{Dn(α|µ),Dn(α|ν)} > n− c

)
>0.98

1− (1− dn)2
n
>0.98

1− 2ndn <0.02

dn >(0.98)2−n

λn{α : min{Dn(α|µ),Dn(α|ν)} > n− c} >2−n−1.

�
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ness over metric spaces. Information and Computation, 207(7):830–847, 2009.

[Lev74] L. A. Levin. Laws of Information Conservation (Non-growth) and Aspects of the Foun-
dations of Probability Theory. Problemy Peredachi Informatsii, 10(3):206–210, 1974.

[Ver21] N. Vereshchagin. Proofs of conservation inequalities for levin’s notion of mutual informa-
tion of 1974. Theoretical Computer Science, 856, 2021.

19


	Introduction
	Universal Uniform Tests
	Thermodynamics

	Conventions
	On Exotic Sets of Natural Numbers
	On Exotic Sets of Reals
	Asymptotic Properties of Randomness Deficiency
	Computable Probability Spaces
	Multi Binary Representation
	Universal Uniform Tests
	Computable Measure Theory
	Algorithmic Thermodynamic Entropy
	Alternative Proof

