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Abstract

Using Kolmogorov Game Derandomization, upper bounds of the Kol-
mogorov complexity of deterministic winning players against deterministic
environments can be proved. This paper extends this result, generalizing
to probabilistic games. This applies to computable, lower computable, and
uncomputable environments. We apply this result to the classic even-odds
game. In addition, we start with an illustrative example of game deran-
domization, involving minotaurs and labyrinths.

1 The Minatour and the Labyrinth

A hero is trapped in a labyrinth, which consists of long corridors connecting
to small rooms. The intent of the the hero is to reach the goal room, which
has a ladder in its center reaching the outside. The downside is the hero is
blindfolded. The upside is there is a minotaur present to guide the hero.

At every room, the minotaur tells the hero the number of corridors n leading
out (including the one which the hero just came from). The hero states a
number between 1 and n and the minotaur takes the hero to corresponding
door. However the hero faces another obstacle, in that the minotaur is trying
to trick him. This means the mapping the minotaur uses is a function of all
the hero’s past actions. Thus if a hero returns to the same room, he may be
facing a different mapping than before. This process continues for a very large
number of turns. The question is how much information is needed by the hero
to find the exit? Using Kolmogorov Game Derandomization, we get the
following surprising good news for the hero. Let c be the number of corridors
and d be the number of doors in the goal room.

The hero can find the exit using log(c/d) + ϵ bits.

The error term ϵ is logarithmic and also is dependent on the information
the halting sequence has about the entire construct, which is negligible except
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in exotic cases. Assuming the Independence Postulate [Lev84, Lev13], one
cannot find such exotic constructs in the physical world.

The reasoning for this is as follows. Take a random hero who chooses a
corridor with uniform probability. Then the hero is performing a random walk
on the graph (of the labyrinth). Assuming the number of turns is greater than
the graph’s mixing time, the probability the hero is at exit at the end is not less
than d/bc, for some fixed constant b. Then the following theorem can be applied.
K(x) is the prefix Kolmogorov complexity of x. I(x;H) = K(x) − K(x|H) is
the amount of information the halting sequence H has about x.

Theorem 1 ([Eps23a]). If probabilistic agent p wins against environment q
with at least probability p, then there is a deterministic agent of Kolmogorov
complexity <log K(p)− log p+ I(⟨p,q⟩;H) that wins against q.

2 Setup

The main result of this paper is to extend Theorem 1 to probabilistic envi-
ronments. Before we do so, we introduce some key tools necessary to prove
this fact. Oa1,...,an(1) is a constant dependent on parameters a1, . . . , an. We
use x <+ y, x >+ y and x =+ y to denote x < y + O(1), x + O(1) > y
and x = y ± O(1), respectively. In addition, x <log y and x >log y denote
x < y + O(log y) and x + O(log x) > y, respectively. We say [A] = 1 if math-
ematical statement A is true, and [A] = 0, otherwise. The function m(x) is a
universal lower-computable semi-measure. Mutual information between strings
is I(x : y) = K(x) +K(y)−K(x, y).

A probability P over N is elementary if it has finite support and its range is a
subset of Q. Elementary probabilities can be encoded into finite strings or nat-
ural numbers. The randomness deficiency of x ∈ N with respect to elementary
probability P and y ∈ N is d(x|P, y) = ⌈− logP (x)⌉ −K(x|P, y).

Definition 1 (Stochasticity). The stochasticity of x ∈ N with respect to y ∈ N
is Ks(x|y) = min{K(P |y) + 3 logmax{d(x|P, y), 1} : P is elementary}.

Lemma 1 ([Eps23b, Lev16]). Ks(x|y) <log I(x;H|y).

Lemma 2 ([Eps22]). For partial computable function f ,
I(f(x);H) <+ I(x;H) +K(f).

A Win/No-Halt game is a series of interactions between an agent p and an
environment q. Each round starts with p initiating a move, which is chosen
out of N and then q responds with a number or q can halt. Agent p wins if
q halts the game, otherwise the game can continue potentially forever. Thus
p is a function (N × N)∗ 7→ N and q is a function N × (N × N)∗ 7→ N ∪ {∅}.
Both p and q are are assumed to be computable, however, lower computable
and uncomputable environments are studied in Section 6. Both the agent and
environment can be probabilistic in their choice actions. Thus the probabilities
of each action are uniformly computable to any degree of accuracy.
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3 Probabilistic Games

In this section we prove Kolmogorov Game Derandomization over probabilistic
environments. This is an extension to Theorem 1, enabling the characterization
of all computable and probabilistic environments.

The main proof uses the notion of a game fragment. A game fragment F
is a finite tree, where each edge has a number n ∈ N representing an action.
On the odd levels, the edges are coupled with rational weights in [0, 1] and
the summation of weights on edges with the same parent node is less than 1.
Such fragments F can be coupled with an probabilistic agent p, who fills in the
weights of each even level edges with its probabilistic action. In such a coupling,
the weight of each path is the product of the probabilities along each edge of
the path. Weight(p,F) is the sum of the weights of each path.

Claim 1. If there is a fragment F where each path from the root to a leaf
represents a winning interaction with an environment q and the weights of F
are not more than q’s probabilities of those particular actions, then Weight(p,F)
is not more than the probability that p wins against q.

Theorem 2. Let p be a probabilistic agent and q be a probabilistic environment.
If p wins in the Win/No-Halt game against q with probability > 2−s, s ∈ N,
then there is a deterministic agent of complexity <log K(p) + 2s+ I(⟨p,q⟩;H)
that wins with probability > 2−s−1.

Proof. We relativize the universal Turing machine to ⟨p, s⟩. Thus this infor-
mation is on an auxiliary tape and implicitly in the conditional of all com-
plexity terms. Let F be a game fragment corresponding the environment q
such that each path is a winning interaction and Weight(p,F) > 2−s and also
K(F|q) = O(1). Note that the actions of F are rationals which lower bound
q’s computable action probabilities. Let Q be an elementary probability mea-
sure that realizes Ks(F) and d = max{d(F|Q), 1}. Without loss of generality,
one can limit the support of Q to encodings of game fragments G such that
Weight(G,p) > 2−s. This can be done by defining a new probability Q′ that is
Q conditioned on the above property, which is straightforward but tedious. Let
m be the longest path and ℓ be the largest action number of any game fragment
in the support of Q. We define a probability P over deterministic agents g
defined up to m steps and up to ℓ actions. Each action of the deterministic
agent is determined by the corresponding probability of actions in that turn by
p. Using backwards induction, for each math fragment G in the support of Q,

Eg∼P [Weight(g,G)] > 2−s.

Let N be a number to be specified later. Assume we randomly define N deter-
minstic agents {gi}Ni=1, each drawn i.i.d. from P . For math fragment G in the

support of Q, XG = 1
N

∑N
i=1 Weight(gi,G). Each such XG is a random variable.

By the Hoeffding’s inequality,

Pr(XG ≤ 2−s−1) < 2exp(−N2−2s−2).
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Let N = d22s+3. Then it is possible to find a set of N deterministic agents such
that

Q({G : XG ≤ 2−s−1}) < e−d.

In the above formula, each XG is a fixed value and no longer a random variable.
It must be that XF > 2−s−1. Otherwise using Q-test t(G) = [XG ≤ 2−s−1]ed,

1.44d < log t(F) <+ d(F) =+ d.

This is a contradiction for large enough d which we can assume without loss of
generality. Thus since XF > 2−s−1 there exists deterministic agent gi such that
Weight(gi,F) > 2−s−1. Thus, by Claim 1, gi wins against q with probability
more than 2−s−1. So,

K(gi|s,p) <+ logN +K(N |s,p)
K(gi) <

+ K(s,p) + 2s+ log d+K(d,Q|s,p)
<log K(p) + 2s+ 3 log d+K(Q|s,p)
<log K(p) + 2s+Ks(F|s,p) (1)

<log K(p) + 2s+Ks(F) +O(logK(s,p)) (2)

<log K(p) + 2s+ I(F ;H) (3)

<log K(p) + 2s+ I(⟨p, s,q⟩;H) (4)

<log K(p) + 2s+ I(⟨p,q⟩;H). (5)

Equations 1 and 2 follow from the definition of stochasticity, Ks. Equation
3 follows from Lemma 1. Equation 4 follows from Lemma 4 and the fact that F
is computable from p, q, and s. Equation 5 is due to the logarithmic precision
of the inequality and K(s) = O(log s)

Corollary 1. Let ϵ ∈ (0, 1) be computable. Let p be a probabilistic agent and
q be a probabilistic environment. If p wins in the Win/No-Halt game against q
with probability > 2−s, s ∈ N, then there is a deterministic agent of complexity
<log K(p) + 2s+ I(⟨p,q⟩;H) +Oϵ(1) that wins with probability > ϵ2−s.

Corollary 2. Let ϵ ∈ (0, 1) and p ∈ (0, 1) both be computable. Let p be a prob-
abilistic agent and q be a probabilistic environment. If p wins in the Win/No-
Halt game against q with probability > p, then there is a deterministic agent of
complexity <log K(p) + I(⟨p,q⟩;H) +Op,ϵ(1) that wins with probability > ϵp.

4 Even-Odds

We define the following game, entitled Even-Odds. There are N rounds. The
player starts out with a score of 0. At the start of each round, the environment q
secretly records a bit ei ∈ {0, 1}. The player sends q a bit bi and the environment
responds with ei. The agent gets a point if ei ⊕ bi = 1. Otherwise the agent
loses a point. The environment q can be any probabilistic algorithm. There are
N rounds.
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Theorem 3. For large enough number of rounds, N , given any probabilistic
environment q there is a deterministic agent p of complexity K(p) <log I(q;H)
that can achieve a score of

√
N with probability > 1/21.

Proof. We describe a probabilistic agent p′. At round i, p′ submits 0 with
probability 1/2. Otherwise it submits 1. By the central limit theorem, for large
enough N , the score of the probabilistic agent divided by

√
N is S ∼ N (0, 1).

Let Φ(x) = Pr[S > x]. A common bound for Φ(x) is

Φ(x) >
1

2π

x

x2 + 1
e−x2/2

Φ(1) >
1

4π
e−1/2 = p.

One can construct a Win/No-Halt game where the player p′ wins if it has a
score of at least

√
N . Thus p′ wins with probability greater than p. Thus by

Corollary 2, with ϵ = 1/(21p), there exists a deterministic agent p that can beat
q with complexity

K(p) <log K(p′) + I(⟨p′,q⟩;H) <log I(q;H).

Furthermore p wins with probability > 1/21.

5 The Minatour Revisited

Suppose the minatour has gotten fed up with the hero, who can find the exit
using a very small amount of information. The minatour decides to use chance
to his advantage. At every room the minatour computes a probability over
all possible mappings of numbers to doors and selects a mapping at random.
This probability is a functions of all the hero’s previous actions. However due
to derandomization of probabilistic games, the hero can achieve the following
results. Let c be the number of corridors and d be the number of doors in the
goal room.

Theorem 4. Given any labyrinth and probabilistic minatour (L,M), there is a
deterministic hero p of complexity K(p) <log 2 log(c/d)+ I(⟨L,M⟩;H) that can
find the goal room with probability greater than d/4.03c.

Proof. We assume the number of turns N is long enough such that given a
random walk of N steps, the probability of being a the goal room is > d/2.01c.
Let s ∈ N be the largest number such that 2−s < d/2.01c. Applying Corollary 1,
where ϵ = 4.02/4.03 and where the probabilistic agent p chooses each door with
uniform probability, on gets a deterministic agent of complexity <log K(p) +
2s+ I(⟨p, s, (L,M)⟩;H) +Oϵ(1) <

log 2 log(c/d) + I(⟨L,M⟩;H). This agent win
with probability > ϵ2−s ≥ ϵd/4.02c ≥ d/4.03c.
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6 Computability of Environments

Claim 2. Theorem 2 and Corollaries 1 and 2 also apply to probabilistic en-
vironments q with lower computable probabilities since K(F|p, s,q) = O(1),
where ⟨p, s,q⟩ consists of a program to compute p, the number s, and a pro-
gram to lower compute q. This is because one lower enumerates the proba-
bilities of q until one can find the corresponding game fragment F such that
Weight(p,F) > 2−s.

In this section, we derive the results of Theorems 1 and 2 with respect to
uncomputable environments. We will use the following mutual information term
between infinite sequences.

Definition 2 ([Lev74]). For α, β ∈ {0, 1}∞,
I(α : β) = log

∑
x,y∈{0,1}∗ m(x|α)m(y|β)2I(x:y).

Proposition 1. I(x;H) <+ I(α : H) +K(x|α).

Now a probabilistic environment q is of the form N × (N × N)∗ → [0, 1].
We fix a computable function ℓ such that for every environment q there is an
infinite sequence α such that ℓ(α, ·) computes q. Let ℓ[q] be the set of all such
infinite sequences α.

Definition 3. For probabilistic environment q, I(q : H) = infα∈ℓ[q] I(α : H).

Theorem 5. Let p be a probabilistic agent and q be a (potentially uncom-
putable) probabilistic environment. If p Wins in the Win/No-Halt game against
q with probability > 2−s, s ∈ N, then there is a deterministic agent of complexity
<log K(p) + 2s+ I(⟨p,q⟩ : H) that wins with probability > 2−s−1.

Proof. Using p, s, any encoding α ∈ ℓ[q], and ℓ, one can construct the math
fragment F described in the proof of Theorem 2. Let α ∈ ℓ[q] and I(α : H) <
I(q : H) + 1. Thus K(F|p, s, α) = O(1). Using Proposition 1, the definition of
I(q : H), and the reasoning of the proof of Theorem 2, this theorem follows.

The follow Theorem extends Theorem 1 to uncomputable environments.

Theorem 6. If probabilistic agent p wins against deterministic, and potentially
uncomputable, environment q with at least probability p, then there is a deter-
ministic agent of complexity <log K(p)− log p+ I(⟨p,q⟩ : H) that wins against
q.

Proof. This follows from using the same reasoning as the proof for Theorem 5
and the proof of Theorem 1 found in [Eps23a].

7 Conclusion

With this paper, characterizations of the Kolmogorov complexity of determin-
istic players against deterministic or probabilistic environments that are com-
putable, lower computable, and uncomputable are given. One open problem is

6



whether there exists a more straightforward proof that does not use stochastic-
ity, Ks. Such an advancement could be applied to the proofs of other theorems
which have I(·;H) in their inequalities. One can prove an extension of Theo-
rem 1 over lower computable probabilistic agents. However this result is not
included, as the author could not think of a game where a lower computable
agent is non-trivially derandomized.
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