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Abstract

A sequence is exotic if it shares a lot of information with the halting sequence. The EL Theorem
proves that for non-exotic finite sets of numbers, the algorithmic probability will be concentrated on
its simpliest element. This manuscript details 9 theorems which describe properties of sequences
that have low mutual information with the halting sequence. In particular, upper bounds are
proven on the Kolmogorov complexity of a total function that extends a binary predicate or a
partial function. A monotone EL Theorem is proved.
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Chapter 1

Introduction

This manuscript contains a series of results regarding the amount of information shared between
finite sequences and the halting information,H. Sequences α with high I(α;H) are considered
exotic and non=realizable, and thus by proving sequences α with certain properties have high
I(αH) then this implies such properties cannot be realized in the physical universe. The results of
this manuscript are as follows:

Classification

Classification is the task of learning a binary function c from N to bits {0, 1}. The learner is given a
sample consisting of pairs (x, b) for string x and bit b and outputs a binary classifier h : N→ {0, 1}
that should match c as much as possible. Occam’s razor says that “the simplest explanation is
usually the best one.” Simple hypothesis are resilient against overfitting to the sample data. With
certain probabilistic assumptions, learning algorithms that produce hypotheses of low Kolmogorov
complexity are likely to correctly predict the target function [BEHW89]. The following theorem
shows that the samples can be compressed to their count.

Theorem. Given a set of samples {(xi, bi)}ni=1, there is a function f : N → {0, 1} such that
f(xi) = bi, for i = 1, . . . , n, and K(f) <log n+ I({(xi, bi)};H).

Regression

A fundamental area of machine learning is regression, in which one is given a set of pairs {(xi, yi)},
i = 1 . . . n, and the goal is to find a function f , such that f(xi) = yi. Usually each xi and yi repre-
sents a point in Euclidean space, but for our purposes they are natural numbers. The goal is to use
Occam’s razor to find the simpliest function, to prevent overfitting to the random noise inherent
in the sample data. This chapter presents the following bounds on the simplest total computable
function completely consistent with the data.

Theorem. For {(xi, yi)}ni=1, there exists total computable f : N → N with f(xi) = yi for i ∈
{1, . . . , n} and K(f) <log

∑n
i=1 K(yi|xi) + I({(xi, yi)};H).
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Monotone EL Theorem

The EL Theorem [Lev16, Eps19] states that the algorithmic probability of a non-exotic set m(D) =∑
x∈D m(D) is concentrated on its simpliest member. A monotone variant of this theorem can be

proved. A continuous semi-measure is a function such that Q(∅) = 0 and Q(x) ≥ Q(x0) + Q(x1).
For prefix free set D, Q(D) =

∑
x∈DQ(x). There exists a universal lower computable continuous

semi-measure M. The monotone complexity of a string x is Km(x) = min{‖p‖ : x v U(p)}.

Theorem. For finite prefix free set D, minx∈D Km(x) <log − log M(D) + I(〈D〉;H).

The Shift Operator and Randomness Deficiency

Typical sequences will be out of sync with respect to the randomness deficiency and shift operator.
The result is as follows. Let m be the algorithmic probability and I(x : y) = K(x)+K(y)−K(x, y)
be the mutual information term. The mutual information between two infinite sequences [Lev74]
is I(α : β) = log

∑
x,y∈{0,1}∗ m(x|α)m(y|β)2I(x:y). The shift operator is σ, where σ(α1α2α3 . . . ) =

α2α3 . . . . The uniform measure over {0, 1}∞ is λ. The randomness deficiency of α ∈ {0, 1}∞ is
D(α) = supn (n−K(α[0..n])). For infinite sequences α, β ∈ {0, 1}∞, (α, β) encodes them with
alternating bits.

Theorem.

(a) If (α, β) is ML Random and I((α, β) : H) <∞ then supn |D
(
σ(n)α

)
−D

(
σ(n)β

)
| =∞.

(b) For λ× λ almost surely, supn |D
(
σ(n)α

)
−D

(
σ(n)β

)
| =∞.

Probabilities are Balanced

In this chapter, we look at probabilities over strings of length n, and prove that they must give
measure to simple strings. This result also appears in the black holes section of the Algorithmic
Physics manuscript at http://www.jptheorygroup.org.

Theorem. There is a c ∈ N where for probability p over {0, 1}n, for m > K(p) + c, p{x : K(x) <
m} > 2m−n−2I(p;H)−3K(n,m)−c.

The Kolmogorov Birthday Paradox

Let us say we select a random subset D of size 2n/2 consisting of (possibly repeated) strings of
length n, where each string is selected independently with a uniform probability. For the simple
Kolmogorov birthday paradox, with overwhelming probability, there are two (possibly the same)
strings x, y ∈ D, such that K(x|y) = O(1), for a large enough constant. This is due to reasoning
from the classical birthday paradox. We now prove the general Kolmogorov birthday paradox.
Let P be any probability over sets D consisting of 2n/2 (non repeated) strings of length n. Since
D ⊂ {0, 1}n, for all D, maxx,y∈D K(x/y) <+ n. The chapter gives the following result.

Theorem. PrD∼P
[

minx,y∈D,x 6=y K(x|y) <log I(P ;H) + 2K(n) + c
]
> 1− 2−c.
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On the Conditional Complexity of Sets of Strings

We define a (k, l) bunch X to be a finite set of strings, where k = dlog |X|e, l > k, and for all
x, x′ ∈ X, K(x|x′) ≤ l. If l � k, such as the bunch consisting of two large independent random
strings, then it is difficult to proof properties about it. If l ≈ k, then interesting properties emerge,
such as the bunch theorem of this chapter.

Theorem. For (k, l) bunch X, minx∈X maxx′∈X K(x|x′) <log 2(l − k) + I(X;H).

We also prove a similar result using expectation instead maximum. We define a (k, l) batch X
to be a finite set of strings, where k = dlog |X|e, l > k, and for all x ∈ X, Ex′∈X [K(x|x′)] ≤ l.

Theorem. For (k, l) batch X, minx∈X Ex′∈X [K(x|x′)] <log l − k + I(X;H).

Extending Chaitin’s Incompleteness Theorem

Gödel’s famous incompleteness theorem states that any theory F that is consistent, recursively
axiomatizable, and “sufficiently rich” (contains Robinson-arithmetic Q, or Q can be interpreted
in it) is incomplete, in that there exists true statements that cannot be proven in it. Chaitin’s
incompleteness theorem proves there exist no logical means to prove lower bounds on K. Let F be
as above, and significantly strong to make assertions about the Kolmogorov complexity of strings.
Furthermore, let F be sound. Then we get the celebrated theorem.

Theorem. (Chaitin’s Incompleteness Theorem) For theory F , there is a constant c such that
F does not prove c < K(x) for any x.

However this theorem doesn’t prohibit the existence of formal systems that prove c < K(x) for
a finite but very large number of strings. Or for our purposes, the above theorem doesn’t prohibit
theories which prove K(x) = c for a large (but finite) number of strings. Such theories are not to
be expected to be accessible by logicians. In this chapter, we prove such systems are exotic, and
cannot exist in the physical world. To do so we prove the following theorem, which states K is
uniformly uncomputable.

Theorem. A relation X ⊂ N× N of 2n unique pairs (b,K(b)) has n <log I(X;H).

The Extended Chaitin’s Incompleteness Theorem follows from the fact that any formal system
that can compute 2n unique pairs (b,K(b)) has high mutual information with the halting sequence
and thus is exotic and non-realizable.

A Small Theorem for Small m

In this chapter, we show that semi measures that majorize the algorithmic probability have infinite
mutual information with the halting sequence.

Theorem. If w is a semimeasure on {0, 1}∗ and m < O(1)w then I(w : H) =∞.
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Chapter 2

Conventions

We use {0, 1}, {0, 1}∗, {0, 1}∞ W, N, Q, and R to denote bits, finite strings, infinite sequences,
whole numbers, natural numbers, rationals, and reals, respectively. Let X≥0 and X>0 be the sets
of nonnegative and positive elements of X. {0, 1}∗∞ = {0, 1}∗ ∪ {0, 1}∞. The positive part of a
real is dae+ = max{a, 0}. For string x ∈ {0, 1}∗, x0− = x1− = x. For x ∈ {0, 1}∗ and y ∈ {0, 1}∗∞,
we use x v y if there is some string z ∈ {0, 1}∗∞ where xz = y. We say x @ y if x v y and x 6= y.
The indicator function of a mathematical statement A is denoted by [A], where if A is true, then
[A] = 1; otherwise, [A] = 0. The self-delimiting code of a string x ∈ {0, 1}∗ is 〈x〉 = 1‖x‖0x. The
encoding of (a possibly ordered) set {x1, . . . , xm} ⊂ {0, 1}∗ is 〈m〉〈x1〉 . . . 〈xm〉.

Probability measures Q over numbers are elementary if |Support(Q)| < ∞ and Range(Q) ⊂
Q≥0. Elementary probability measures Q with {x1, . . . , xm} = Support(Q) are encoded by finite
strings, with 〈Q〉 = 〈{x1, Q(x1), . . . , xm, Q(xm)}〉. For the nonnegative real function f , we use
<+ f , >+ f , and =+ f to denote < f + O(1), > f − O(1), and = f ± O(1). We also use <log f
and >log f to denote < f +O(log(f + 1)) and > f −O(log(f + 1)), respectively.

We use a universal prefix-free algorithm U , where we say Uα(x) = y if U , on main input x
and auxiliary input α, outputs y. We define Kolmogorov complexity with respect to U , where if
x ∈ {0, 1}∗, y ∈ {0, 1}∗∞, then K(x/y) = min{‖p‖ : Uy(p) = x}. The universal probability m
is defined as m(x/y) =

∑
p[Uy(p) = x]2−‖p‖. By the coding theorem, K(x/y) =+ − log m(x/y).

By the chain rule, K(x, y) =+ K(x) + K(y/x,K(x)). The halting sequence H ∈ {0, 1}∞ is the
unique infinite sequence where H[i] = [U(i) halts]. The information that x ∈ {0, 1}∗ has about H,
conditional on y ∈ {0, 1}∗∞, is I(x;H/y) = K(x/y)−K(x/〈y,H〉). I(x;H) = I(x;H/∅). The result
is as follows. Let K be the prefix free Kolmogorov complexity. Let I(x : y) = K(x)+K(y)−K(x, y)
be the mutual information term. The mutual information between two infinite sequences [Lev74]
is I(α : β) = log

∑
x,y∈{0,1}∗ m(x|α)m(y|β)2I(x:y). We the randomness deficiency of α ∈ {0, 1}∞ is

D(α) = supn (n−K(α[0..n])).
A continuous semi-measure is a function such that Q(∅) = 0 and Q(x) ≥ Q(x0) + Q(x1). For

prefix free set D, Q(D) =
∑

x∈DQ(x). There exists a universal lower computable continuous semi-
measure M. The monotone complexity of a string x is Km(x) = min{‖p‖ : x v U(p)}. This differs
from the standard definition in that the universal Turing machine U is used and it must halt.

This paper uses notions of stochasticity in the field of algorithmic statistics. A string x
is stochastic, i.e., has a low Ks(x) score if it is typical of a simple probability distribution.
The extended deficiency of the randomness function of a string x with respect to an elemen-
tary probability measure P conditional on y ∈ {0, 1}∗ is d(x|P, y) = b− logP (x)c −K(x/〈P 〉, y).
d(x|P ) = b− logP (x)c −K(x/〈P 〉)

Definition 1 (Stochasticity) For x, y ∈ {0, 1}∗, Ks(x/y) = min{K(P/y)+3 log max{d(x|P, y), 1} :
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P is an elementary probability measure}. Ks(x) = Ks(x/∅).

Theorem 1 For program q that computes probability p over N, Ea∼p
[
2I(〈q,a〉;H)

] ∗
< 2I(q;H).

Proof. The goal is to prove
∑

a p(a)m(a, q/H)/m(a, q)
∗
< m(q/H)/m(q). Rewriting this inequal-

ity, it suffices to prove
∑

a

(
m(q)p(a)/m(a, q)

)(
m(a, q/H)/m(q/H)

) ∗
< 1. The term m(q)p(a)/m(a, q)

∗
<

1 because K(q)−log p(a) >+ K(a, q). Furthermore, it follows directly that
∑

a m(a, q/H)/m(q/H)
∗
<

1. �

Theorem 2 For partial computable f : N→ N, for all a ∈ N, I(f(a);H) <+ I(a;H) + K(f).

Proof. Observe that,

I(a;H) = K(a)−K(a|H)

>+ K(a, f(a))−K(a, f(a)|H)−K(f)

The chain rule (K(x, y) =+ K(x) + K(y|K(x), x)) applied twice results in

I(a;H) + K(f) >+ K(f(a)) + K(a|f(a),K(f(a)))− (K(f(a)|H) + K(a|f(a),K(f(a)|H),H))

=+ I(f(a);H) + K(a|f(a),K(f(a)))−K(a|f(a),K(f(a)|H),H)

=+ I(f(a);H) + K(a|f(a),K(f(a)))−K(a|f(a),K(f(a)),K(f(a)|H),H)

>+ I(f(a);H).

�

Theorem 3 For probability p over N, computed by program q, Ea∼p[2
I(a;H)]

∗
< 2I(q;H).

Proof. This corollary follows from Theorems 1 and 2. �

Corollary 1 For probability p over N, computed by program q,

Pra∼p [I(a;H) > I(q;H) +m]
∗
< 2−m.

Proof. This corollary follows from Theorem 3. �

It is well known in the literature that non-stochastic objects have high mutual information
with the halting sequence. In the following lemma, we reprove this fact, without using left-total
machines, which was used in the original proof.

Lemma 1 Ks(x) <log I(x;H).

Proof. We dovetail all programs to the universal Turing machine U . For p ∈ Domain(U), n(p) ∈
N is the position in which the program p ∈ {0, 1}∗ terminates. Let Ωn =

∑
p:n(p)<n 2−‖p‖ and

Ω = Ω∞ be Chaitin’s Omega. Let Ωn
t be Ωn restricted to the first t digits. Let x∗ ∈ {0, 1}K(x),

with U(x∗) = x with minimum n(x∗). Let k(p) = max{` : Ω
n(p)
` = Ω`} and k = k(x∗). We
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define the elementary probability measure Q(x) = max{2−‖p‖+k : k(p) = k, U(p) = x}, Q(∅) =
1−Q({0, 1}∗ \ {∅}).

d(x|Q) = − logQ(x)−K(x|Q) <+ (K(x)− k)−K(x|Ωk)

<+ (K(x|Ωk) + K(Ωk)− k)−K(x|Ωk) <
+ (k + K(k))− k

<+ K(k).

K(x|H) <+ K(x|Q) + K(Q|H) <+ K(x|Q) + K(Ωk|H)

<+ − logQ(x) + K(k) <+ (K(x)− k) + K(k)

k <log K(x)−K(x|H)

Ks(x) <+ K(Q) +O(log max{d(x|P ), 1}) <+ k +O(K(k)) <log I(x;H).

�

8



Chapter 3

Classification

A binary predicate is defined to be a function of the form f : D → {0, 1}, where D ⊆ N. We say
that binary predicate (or finite string) λ is an extension of γ, if for all i ∈ Dom(γ), γ(i) = λ(i). If
a binary predicate has a domain of N and is an extension of binary predicate γ, then we say it is a
complete extension of γ. The self-delimiting code for a binary predicate γ with a finite domain is
〈{x1, λ(x1), . . . , xn, λ(xn)}〉. The Kolmogorov complexity of a binary predicate λ with an infinite
sized domain is K(λ) = K(f), where f : N→ N is a partial computable function where f(i) = λ(i)
if i ∈ Dom(λ) and f(i) is undefined otherwise. If there is no such partial computable function,
then K(λ) =∞. In this chapter, we assume the universal Turing machine U , is “left-total”, which
is introduced in Chapter 8.

Theorem 4 (EL Theorem [Eps19, Lev16]) For set D ⊂ N, minx∈D K(x) <log − log m(D) +
I(D;H).

Theorem 5 For binary predicate γ and the set Γ of complete extensions of γ,
ming ∈Γ K(g)<log |Dom(γ)|+I(〈γ〉:H).

Proof. We recall that bb(b) = max{U(p) : p C b, or p w b} is the largest number produced by
a program that extends or is to the left of b. The theorem is meaningless if |Dom(γ)| = ∞, so we
can assume q = |Dom(γ)| < ∞. Let n = max{i : i ∈ Dom(γ)}. Let b be the shortest total string
where bb(b) ≥ n. Let N = bb(b).

Let D be the set of all strings of length N , that extends γ. Theorem 18, relative to b, gives
a ∈ D with

K(a|b) <log − log m(D|b) + I(D;H|b)
K(a) <log q + K(b) + I(D;H|b).

It must be that K(b|D, ‖b‖) = O(1) as there is a program that can enumerate, from the left, total
strings of length ‖b‖. This program returns the first total string b′ such that D ⊂ {0, 1}bb(b′). This
b′ is equal to b, otherwise b′ C b and thus bb(b′−) ≥ bb(b′) ≥ n, contradicting the definition of b.
Applying Lemma 4,

K(a) <log q + I(D;H) + K(b|D, ‖b‖)
K(a) <log q + I(D;H).
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Furthermore, it must be K(D|〈γ〉) <+ K(‖b‖) using the same reasoning as above. So, using lemma
2, and the fact that the left hand side >+ K(b), where b is a random string,

K(a) <log q + I(〈γ〉;H) + K(‖b‖)
K(a) <log q + I(〈γ〉;H)

Thus there exists a complete extension g′ ∈ Γ, of γ, that is equal to a[i] for all i ≤ ‖a‖, and 0
otherwise. This g′ can be computed with a program of size <+ K(a), and thus,

min
g∈Γ

K(g) ≤ K(g′) <+ K(a) <log |Dom(γ)|+ I(γ : H).

�
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Chapter 4

Regression

4.1 Introduction

One central area of machine learning is regression, in which one is given a set of pairs {(xi, yi)},
i = 1 . . . n, and the goal is to find a function f , such that f(xi) = yi. Usually each xi and yi repre-
sents a point in Euclidean space, but for our purposes they are natural numbers. The goal is to use
Occam’s razor to find the simpliest function, to prevent overfitting to the random noise inherent
in the sample data. This chapter presents the following bounds on the simplest total computable
function completely consistent with the data.

Theorem. For {(xi, yi)}ni=1, there exists total computable f : N → N with f(xi) = yi for i ∈
{1, . . . , n} and K(f) <log

∑n
i=1 K(yi|xi) + I({(xi, yi)};H).

4.2 Conventions

For positive real functions f , by <+f , >+f , =+f , and <logf , >logf , ∼f we denote ≤ f+O(1),
≥ f−O(1), = f±O(1) and ≤ f+O(log(f+1)), ≥f −O(log(f+1)), = f±O(log(f+1)). K(x|y) is the
conditional prefix Kolmogorov complexity. The chain rule states K(x, y) =+ K(x) + K(y|K(x), x).
Let [A] = 1 if the mathematical statement A is true, otherwise [A] = 0. Let Kt(x|y) = inf{‖p‖ :
Uy(p) = x in t steps}. The information the halting sequence H has about x is I(x;H|y) = K(x|y)−
K(x|y,H). I(x;H) = I(x;H|∅). A probability measure is elementary if its support is finite and
it has rational values. The deficiency of randomness of x ∈ {0, 1}∗ with respect to elementary
probability measure Q is d(X|Q) = d− logQ(X)−K(x|〈Q〉)e. The stochasticity of x is Ks(x) =
minQ K(Q) + 3 log max{d(X|Q), 1}.

4.3 Results

Let Ω =
∑{2−‖p‖ : U(p) halts} be Chaitin’s Omega, Ωn ∈ Q≥0 be be the rational formed from the

first n bits of Ω, and Ωt =
∑{2−‖p‖ : U(p) halts in time t}. For n ∈ N, let bb(n) = min{t : Ωn <

Ωt}. bb−1(m) = arg minn{bb(n− 1) < m ≤ bb(n)}. Let Ω[n] ∈ {0, 1}∗ be the first n bits of Ω.

Lemma 2 For n = bb−1(m), K(Ω[n]|m,n) = O(1).

Proof. For a string x, let BB(x) = inf{t : Ωt > 0.x}. Enumerate strings of length n, starting
with 0n, and return the first string x such that BB(x) ≥ m. This string x is equal to Ω[n], otherwise

11



let y be the largest common prefix of x and Ω[n]. Thus BB(y) = bb(‖y‖) ≥ BB(x) ≥ m, which
means bb−1(m) ≤ ‖y‖ < n, causing a contradiction. �

Theorem 6 For {(xi, yi)}ni=1, there exists total computable f : N → N with f(xi) = yi for i ∈
{1, . . . , n} and K(f) <log

∑n
i=1 K(yi|xi) + I({(xi, yi)};H).

Proof. Let S = {(xi, yi)}. Let K =
∑n

i=1 K(yi|xi). We have T = arg mint
∑n

i=1 Kt(yi|xi) = K.
Let N = bb−1(T ) and M = bb(N) and we define m(x|y) = 2−KM (x|y), setting m(∅|y) = 1−m(N|y).

We condition all terms on M and K, and later in the proof, we’ll make this condition explicit.
Let Q be an elementary probability that realizes the stochasticity of S, where d = max{d(S|Q), 1}.
Without loss of generality, we can assume the support of Q consists entirely of samples R =
{(xj , yj)}nRj=1 (of potentially different sizes) such that

∏nR
j=1m(yj |xj) = 2−M . Let

z = max{x : (x, y) ∈ R ∈ Support(Q)}.

We define a probability measure κ over d2K lists L of size z over N, where each ` ∈ L is chosen
independently, and for each ` ∈ L, `(i) is chosen independently according to m(·|i). We say a
sample R = {(xj , yj)} is inconsistent with a list `, R n `, if there exists j, where `(xj) 6= yj .
η(R,L) = [∀` ∈ L, E n `].

EL∼κER∼Q[η(R,L)] = E{(xj ,yj)}∼Q

1−
∏
j

m(yj |xj)

d2K

< ER∼Qe
−d = e−d.

Thus there exists a set of d2K lists L, where ER∼Q[η(R,L)] < e−d. Thus let t(R) = η(R,L)ed be
a Q-test, where ER∼Q[t(R)] ≤ 1. It must be t(S) = 0, otherwise we have

1.44d ≤ log t(S) <+ d(S|Q) <+ d,

which is contradiction for large d, which we can assume without loss of generality. So there exists a
list ` such that `(xi) = yi, for all (xi, yi) ∈ S. Thus one can construct a total computable function
f : N → N from ` that is consistent with S, for example f(x) = `(x) if x ≤ z and f(x) = 1
otherwise. Making the condition term M explicit and keeping the condition term K implicit we
have,

K(f |M) <+ K(`|M)

<+ log |L|+ K(L|M)

<+ K + log d+ K(Q, d|M)

<+ K + Ks(S|M).

Using Lemma 1, we get, noting M = bb(N), and bb is computable relative to H,

K(f |M) <log K + I(S;H |M).

K(f) <log K + K(S|M) + K(M)−K(S|H) + K(N).

12



So we have,

K(S|M) + K(M)

<+K(S|M,K(M)) + K(K(M)|M) + K(M)

<+K(S,M) + K(K(M)|M) (4.1)

<+K(S,N,M) +O(logN) (4.2)

<+K(S,N) +O(logN). (4.3)

<+K(S) +O(logN).

K(f) <logK + K(S)−K(S|H) +O(logN). (4.4)

Equation 10.2 is from the chain rule. Equation 10.3 is from the fact thatM = bb(N). Equation 10.4
comes K(T |S,K) = O(1) and Lemma 8, which implies K(M |N,T ) <+ K(Ω[N ]|N,T ) <+ O(1).

FromK, and S, one can compute T , where bb−1(T ) = N . Therefore by Lemma 8, K(Ω[N ]|S) <+

K(N), so by Lemma 2,

N <log I(Ω[N ];H) <log I(S;H) + K(N) <log I(S;H). (4.5)

The above equation used the common fact that the first n bits of Ω had n−O(log n) bits of mutual
information with H. So combining Equations 10.5 and 10.6, we get

K(f) <log K + I(S;H).

The proof is completed by noting the log precision, and the K term in the equation removes the
implicit conditioning of K. �
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Chapter 5

Monotone EL Theorem

The EL Theorem states that the algorithmic probability of a non-exotic set is concentrated on its
simpliest element, with

min
x∈D

K(x) <log − log m(D) + I(〈D〉 : H).

There exists a montone variant to this theorem, using M instead of m and Km instead of K.
The two results are related, but neither one is readily entailed by the other. Chapter 3 is a direct
consequence to the main theorem of this chapter.

5.1 Open Sets

The Kolmogorov complexity of an infinite sequence α ∈ {0, 1}∞ is K(α), the size of the smallest
program to a universal Turing machine that will output, without halting, α on the output tape.
The uniform measure is µ(x) = 2−‖x‖.

Theorem 7 For clopen set C ⊆ {0, 1}∞, minα∈C K(α) <log − logµ(C) + I(〈C〉;H).

Proof. Let s = d− logµ(C)e and we relativize the universal Turing machine U to s. Let P be an
elementary probabilty measure that realizes Ks(〈C〉). Let n = max{‖x‖ : x ∈ W ⊂ {0, 1}∗, 〈W 〉 ∈
Supp(P )}. Let d = max{d(〈C〉|P ), 1} and c ∈ N be a constant to be chosen later. Let κ be the
uniform probability measure over lists L of cd2s+1 strings of length n, where κ(L) = 2−ncd2s+1

. Let
tL(〈W 〉) be a function, parameterized by a list L ⊆ {0, 1}n, over encoded clopen sets W ⊆ {0, 1}∞,
with tL(〈W 〉) = [µ(W ) ≥ 2−s,W E L = ∅]ecd.

EL∼κE〈W 〉∼P [tL(〈W 〉)] ≤
∑

clopen W⊆{0,1}∞
P (〈W 〉)

(
1− 2−s

)cd2s+1

ecd

≤ e−2−scd2s+1
ecd = e−cd

< 1.

Thus there exists a list L of cd2s+1 strings such that E〈W 〉∼P [tL(〈W 〉)] < 1. This L can be
found with brute force search, with K(L|c, d, P ) = O(1). It must be that C E L 6= ∅. Otherwise
tL(〈C〉) = ecd and since tL(·)P (·) is a semi-measure, for large enough c solely dependent on the

14



universal Turing machine U , a contradiction occurs, with

K(C|c, d, 〈P 〉) < − log tL(〈C〉)P (〈C〉) +O(1)

K(C|c, d, 〈P 〉) < − logP (〈C〉)− (lg e)cd+O(1)

(lg e)cd < − logP (〈C〉)−K(C|s, 〈P 〉) + K(d, c) +O(1)

(lg e)cd < d+ K(d, c) +O(1).

So there exists x ∈ C E L, with

K(x) <+ log
∣∣L∣∣+ K(L)

<+ log
∣∣L∣∣+ K(d, P )

<+ log d+ s+ K(d) + K(P )

< s+ Ks(〈C〉).

Since x ∈ C E L, Γx ⊆ C. Thus there is a program g that outputs x and then an infinite sequence
of 0’s. Since x0∞ ∈ C and ‖g‖ <+ K(x), and using Lemma 1,

min
α∈C

K(α) ≤ ‖g‖ <+ K(x) < s+ Ks(〈C〉)

<log s+ I(〈C〉;H).

�
Theorem 7 can be generalized to arbitrary open sets of the Cantor space. Such sets S can have

encodings 〈S〉 that are infinite sequences. We recall that the information term between infinite
sequences is I(α : β) = log

∑
x,y∈{0,1}∗ m(x|α)m(y|β)2I(x:y).

Theorem 8 For open set S ⊆ {0, 1}∞, minα∈S K(α) <log − logµ(S) + I(〈S〉 : H).

Proof. Let s = d− logµ(S)e. Let {xi}ni=1 = {x : Γx is maximal in S}, with n ∈ N ∪ ∞. Let
N ∈ N be the smallest number such that

∑N
i=1 2−‖xi‖ > 2−s−1. Let C =

⋃N
i=1 Γxi be a clopen set

with C ⊆ S. By Theorem 7,

min
α∈C

K(α) <log s+ I(〈C〉;H). (5.1)

Based on the definition of I:

I(〈C〉;H) <+ I(〈S〉 : H) + K(〈C〉|〈S〉)
<+ I(〈S〉 : H) + K(s).

So

min
α∈S

K(α) <log s+ I(〈S〉 : H).

�
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5.2 Algorithmic Monotone Probability of Sets

A total computable function ν : {0, 1}∗→{0, 1}∗ is prefix-monotonic iff for all strings x and y,
ν(x)v ν(xy). Let ν : {0, 1}∗∪{0, 1}∞→{0, 1}∗∪{0, 1}∞ be used to represent the unique extension
of ν to infinite sequences. Its definition for all α ∈ {0, 1}∗∪{0, 1}∞ is ν(α) = sup {ν(α≤n) :n≤‖α‖},
where the supremum is respect to the partial order derived with the v relation. The following the-
orem relates prefix monotone machines and continuous semi-measures. It is equivalent to Theorem
4.5.2 in [LV08], with the simple modification that the machine be total computable.

Theorem 9 For each lower-computable continuous semi-measure σ over {0, 1}∞, there is a prefix-
monotonic function νσ, where for prefix free G ⊂ {0, 1}∗, d− log σ(G)e=+d− logµ{α:νσ(α) w x ∈ G}e.

Since there is a universal lower-semicomputable continuous semi-measure M, there exists a
prefix-monotonic function νM, with the following property.

Corollary 2 For finite prefix free set G, − log M(G) =+ − logµ{α :x v νM(α), α∈{0, 1}∞, x ∈
G}.

The following corollary is equivalent to Theorem 7 in terms of finite strings instead of clopen sets.
For finite prefix free set G ⊂ {0, 1}∗, µ(G) =

∑
x∈G 2−‖x‖.

Corollary 3 For finite prefix free G ⊂ {0, 1}∗, s = d− logµ(G)e, and h = I(G;H), we have
minywx∈G K(y) <log s+ h.

Theorem 10 For finite prefix-free set G ⊂ {0, 1}∗, minx∈G Km(x) <log − log M(G) + I(G;H).

Proof. Let i = d− log M(G)e and h = I(G;H). Due to Theorem 9, there exists a finite prefix-free
set F ⊂ {0, 1}∗ such that

1. − logµ(F ) ≤ i+ 1,

2. for all x ∈ F , νM(x) w z ∈ G,

3. K(F |G) <+ K(i).

By Corollary 3, there exists y w x ∈ F , with K(y) <log i + h′, where h′ = I(F ;H). Using Lemma
2, we have that K(y) <log i+h, noting that K(F |G) <+ K(i). Thus there is a program p of length
<+ K(y) that computes y and then outputs νM(y) w νM(x) w z ∈ G. So Km(G) <+ ‖p‖ <+

K(y) <log i+ h. �

Corollary 4 For (potentially infinite) prefix-free set G ⊂ {0, 1}∗, minx∈G Km(x) <log − log M(G)+
I(〈G〉 : H).

The proof of this corollary follows analogously to the proof of Theorem 8, except M is used instead
of µ. �
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Chapter 6

The Shift Operator and Randomness
Deficiency

6.1 Introduction

In [Eps23a], a result was proven about thermodynamics and product spaces. It was shown that all
typical states of product spaces cannot have their marginal algorithmic thermodynamic entropies
in synch during the course computable ergodic dynamics. This result was over all computable
metric spaces, using the foundation of [HR09]. This chapter shows the special case of the Cantor
space and the shift operator, which could be of independent interest from algorithmic physics. It
is proved using the uniform measure, but with a little bit of work, it can be generalized to two
different computable probability measures.

The shift operator is σ, where σ(α1α2α3 . . . ) = α2α3 . . . . The uniform measure over {0, 1}∞ is
λ. We recall that the randomness deficiency of α ∈ {0, 1}∞ is D(α) = supn (n−K(α[0..n])). For
infinite sequences α, β ∈ {0, 1}∞, (α, β) encodes them with alternating bits.

Theorem.

(a) If (α, β) is ML Random and I((α, β) : H) <∞ then supn |D
(
σ(n)α

)
−D

(
σ(n)β

)
| =∞.

(b) For λ× λ almost surely, supn |D
(
σ(n)α

)
−D

(
σ(n)β

)
| =∞.

For n ∈ N, let bb(n) = min{t : Ωn < Ωt}. bb−1(m) = arg minn{bb(n− 1) < m ≤ bb(n)}. Let
Ω[n] ∈ {0, 1}∗ be the first n bits of Ω. The function t is a universal lower computable λ × λ test,

where if t is a lower computable λ× λ test, with
∫
tdλ× dλ < 1, then t

∗
< t. If t(α, β) =∞, then

(α, β) is not ML random.

Lemma 3 For n = bb−1(m), K(Ω[n]|m,n) = O(1).

Proof. For a string x, let BB(x) = inf{t : Ωt > 0.x}. Enumerate strings of length n, starting
with 0n, and return the first string x such that BB(x) ≥ m. This string x is equal to Ω[n], otherwise
let y be the largest common prefix of x and Ω[n]. Thus BB(y) = bb(‖y‖) ≥ BB(x) ≥ m, which
means bb−1(m) ≤ ‖y‖ < n, causing a contradiction. �
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Theorem 11 ([GHR10]) Let C ⊆ {0, 1}∞ be a clopen set and An = (1C + 1C ◦ σ + · · · + 1C ◦
σ(n−1))/n− λ(C). There is a computable function n(δ, ε), such that

λ{α : sup
n>n(δ,ε)

|An(α)| > δ} < ε.

Theorem 12 ([Ver21, Lev74, Gei12]) Prµ(I(α : H) > n)
∗
< 2−n+K(µ).

6.2 Results

Theorem 13

(a) If (α, β) is ML Random and I((α, β) : H) <∞ then supn |D(σ(n)α)−D(σ(n)β)| =∞.

(b) For λ× λ a. s., supn |D
(
σ(n)α

)
−D

(
σ(n)β

)
| =∞.

Proof. (a). Assume not. Then there exists c ∈ N, c > maxt |D(α) − D(β)|. Fix n ∈ N. Let
Un = {α : D(α) > n}. It is easy to see that λ(Un) > 2−n−2 logn−d, for some constant d. Given n, one
can compute a clopen set Vn ⊂ Un with pn = − log λ(Vn) and n+2 log n+d < pn < n+2 log n+d+1.
Let Bn

m = (1Vn + 1Vn ◦ σ + · · · + 1Vn ◦ σ(m−1))/m, which is computable. Noting that σ is a com-
putable ergodic transform, by Theorem 11, given δ, ε > 0, there is a computable m(δ, ε, n) such
that λ{γ, : supm>m(δ,ε,n) |Bn

m(γ) − 2−pn | > δ} < ε. Let mn = m(2−pn − 2−1.5pn , 2−n, n). Let

Wn = {γ : supm>mn |Bn
m(γ)− 2−pn | > 2−pn − 2−1.5pn}. Either (1) there is an infinite number of n

where α ∈Wn, or (2) there is an infinite number of n where α 6∈Wn.

Case (1). Each Wn is an effectively open set, computable uniformly in n. Furthermore,

µ(Wn) < 2−n. Thus t(γ, λ) = supn[γ ∈ Wn]m(n)2n is a λ × λ test. So ∞ = t(α, β)
∗
< t(α, β),

which (α, β) is not ML random, causing a contradiction.

Case (2). Fix one such n ∈ N, where α 6∈Wn. Thus supm>mn |2−pn −Bn
m(α)| ≤ 2−pn − 2−1.5pn

implies supm>mn B
n
m(α) ≥ 2−1.5pn . Each σ(−`)Vn is an effectively open set, uniformly in k and `.

So for all m > mn, there are at least 2−1.5pnm indices `, where α ∈ σ(−`)Vn. Let bn = bb−1(mn+1)
and N be the smallest power of 2 not less than bb(bn). Thus, due to Lemma 8, K(N |(α, β)) <+

K(n, bn). Thus there are at least 2−1.5(n+2 logn+d+1)N indices ` ∈ [1, . . . , N ] where α ∈ σ(−`)Vn.
Let D ⊆ {0, 1}logN , where if x ∈ D then α ∈ σ(−Num(x))Vn and |D| ≥ 2−1.5(n+2 logn+d+1)N . The
function Num : {0, 1}logN → {1, 2, . . . , N} converts strings to numbers in the natural way. Thus
K(D|(α, β)) <+ K(n, bn). Let Uniform(N) be the uniform measure over {0, 1}logN . By the EL

Theorem (Theorem 18) applied to Uniform(N)
∗
< m/m(N), and the definition of I, there exists

xn ∈ D, with

K(xn) <log K(Uniform(N))− log |D|+ I(D;H)

<log K(N) + 1.5n+ 3 log n+ I((α, β) : H) + K(n, bn)

<log K(Ω[bn]) + 1.5n+ I((α, β) : H) + K(bn). (6.1)

Due to Lemma 8, K(Ω[bn])|(α, β), n, bn) = O(1). Furtheremore, it is well known that for bits of
Chaitin’s Omega, K(Ω[bn]|H) <+ K(bn) and that bn <

+ K(Ω[bn]). So

bn <
+ K(Ω[bn]) <log I(Ω[bn];H) <log I((α, β) : H) + K(bn, n) <log I((α, β) : H) + K(n) (6.2)
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Combining Equations 6.1 and 6.2 together, we get

K(xn) <log 1.5n+ 2I((α, β) : H).

We define the test

tn,y(γ, λ) =
[
D(σ(Num(y))γ) > n and D(σ(Num(y))λ) > n− c

]
22n−c,

t(γ, λ)
∗
>
∑
n

m(tn,xn)tn,xn(γ, λ)

∗
>
∑
n

[
D(σ(Num(xn))γ) > n and D(σ(Num(xn))λ) > n− c

] 2.5n−2I((α,β):H)

(n+ I((α, β) : H))O(1)
.

In recap, since α 6∈ Wn, |Bn
N (α) − 2−pn | > 2−pn − 2−1.5pn , so Bn

N > 2−1.5pn > 2−1.5(n+2 logn+d).
Thus one can create a large enough set D ⊂ {0, 1}N , and find a simple enough xn ∈ D such that
α ∈ σ(−Num(xn))Vn. By assumption of the theorem

D(σ(Num(xn))α) > n and D(σ(Num(xn))β) > n− c.

Thus m(tn, xn)tn,xn(α, β) = 2.5n−2I((α,β):H

(n+I((α,β):H))O(1) . Furthermore, since I(α, β) < ∞ and there is an

infinite number of n where (α, β) 6∈ Wn, t(α, β) = ∞, so (α, β) is not ML-random, causing a con-
tradiction.

(b) By the results of (a), if supn |D
(
σ(n)α

)
−D (σn(β)) | < ∞, then (α, β) is not ML random

or I((α, β) : H) =∞. By Theorem 12, λ{γ : I(γ : H) =∞} = 0. Thus (α, β) is in a λ null set, and
thus also a λ× λ null set. �
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Chapter 7

Probabilities are Balanced

7.1 Introduction

It has been proven that large sets of strings are exotic if they all have similar complexities. By exotic,
we mean their encoding has high mutual information with the halting sequence. Similarly if one
probability over infinite strings gives large measure to sequences with low deficiency of randomness
with respect to a second probability, then it is exotic. In this chapter, we look at probabilities
over strings of length n, and prove that they must give measure to simple strings. We first prove
a simple bound. The main result is the tighter bound. This result also appears in the black holes
section of the Algorithmic Physics manuscript at http://www.jptheorygroup.org.

Proposition 1 (Simple Bound) There is a c where for probability p over {0, 1}n, for all m >
K(p) + c, p{x : K(x) < m} > 2m−2K(m,p)−n−c.

Proof. Order strings x of size n by p(x) value, with largest values first, and breaking ties through
any simple ordering on {0, 1}n. It must be the first 2` strings X has p(X) ≥ 2`−n−1 Otherwise
the average value of p(x), x ∈ X, is less than 2−n−1. Thus for the remaining 2n − 2` strings Y ,
p(y) < 2−n−1, So

p({0, 1}n) = p(X) + P (Y )

< 2`−n−1 + (2n − 2`)(2−n−1)

= 2`−n−1 + 2−1 − 2`−n−1

= 1/2,

which is a contradiction. Furthermore, the first 2` elements x have complexity K(x|p) <+ `+ K(`)
or K(x) <+ K(p, `) + `. Let m = `+ K(`, p) +O(1). By Proposition 3, m− 2K(m, p) <+ `. �

Proposition 2 For every c, n ∈ N, there exists c′ ∈ N where for all a, b ∈ N, if a < b+ n log a+ c
then a < b+ 2n log b+ c′.

Proof.

log a < log b+ log log a+ log cn

2 log a− 2 log log a < 2 log b+ 2 log cn

log a < 2 log b+ 2 log dn.

20

http://www.jptheorygroup.org


Combining with the original inequality

a < b+ n log a+ c

a < b+ n(2 log b+ 2 log dn) + c

= y + 2n log y + c′,

where c′ = 2n log cn+ c. �

Proposition 3 For all d ∈ N there is a d′ ∈ N where if x+K(x, z)+d > y then x+d′ > y−2K(y, z).

Proof. If x+ d > y, then the lemma is satisfied, so x+ f ≤ d. Thus y − x < K(x, z) + d implies
K(y−x) <+ 2 log K(x, z)+2 log d. Thus K(x, z) <+ K(y, z)+K(y−x) <+ K(y, z)+2 log K(x, z)+
2 log d. Applying Proposition 2, where a = (x, z), b = (y, z) and c = 2 log d + O(1) and n = 2, we
get a c′ dependent on c and n where K(x, z) < K(y, z) + 4 log K(y, z) + c′ < 2K(y, z) + c′ +O(1).
So

x+ K(x, z) + d > y

x+ (2K(y, z) + d′ +O(1)) + d > y

x+ d′′ > y − 2K(y, z),

where d′′ = d′ +O(1) + d. �

7.2 Tighter Bound

Theorem 14 ([Eps23b]) For probability p over {0, 1}∗, D ⊂ N, |D| = 2s, s < maxa∈D d(a|p) +
I(D;H) +O(log I(D;H)) + K(s) +O(log K(s, p)).

Theorem 15 There is a c ∈ N where for probability p over {0, 1}n, for m > K(p) + c, p{x :
K(x) < m} > 2m−n−2I(p;H)−O(K(n,m))−c.

Proof. Without loss of generality, p can be assumed to have a range in powers of 2. As-
sume not, then there exist ` ∈ (K(p) + c, n) such that p{x : K(x) ≤ `} < 2−k, where k =
n− `− c− 2I(p;H)−O(K(n, `)) and c solely depends on the universal Turing machine. K(k) <+

K(n, `, c, I(p;H),K(n, `)). Suppose max{p(x) : K(x) > `} ≥ 2−k. Then

K(p) +O(1) > K
(

arg max
x

p(x)
)
> ` > K(p) + c,

causing a contradiction, for choice of c dependent on U . Sample 2k−2 elements D without replace-
ment according to p. p∗ is the probability of D, where K(p∗) <+ K(p, n, `, c, I(p;H),K(n, `)). Even
if every element x chosen has p(x) = 2−k−1, the total p mass sampled is not greater than

2k−12k−2 ≤ 2−3.

The probability q that all x ∈ D has K(x) > ` is

q >
(

1− 2−k/(1− 2−3 + 2−k)
)2k−2

>
(

1− 2k+1
)2k−2

= 1/2.
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Thus, by Theorems 2 and 3,

Pr
S∼p∗

[I(S;H) > I(p∗;H) +m]
∗
< 2−m,

Pr
S∼p∗

[I(S;H) > I((p, n, `, c, I(p;H),K(n, `));H) +m]
∗
< 2−m.

So by probabilistic arguments, there exists D ⊂ {0, 1}n, where for all x ∈ D, K(x) > ` and

I(D;H) <+ I(p∗;H) <+ I((p, `, c, I(p;H),K(n, `));H) <+ I(p;H) + K(`, n, I(p;H),K(n, `), c).

So by Theorem 14, applied to D and the uniform measure Un over strings of length n,

k < max
a∈D

d(a|Un) + I(D;H) +O(log I(D;H)) + K(k) +O(log K(Un, k))

n− `+ K(n) + c+O(K(`, n)) + 2I(p;H) <n− `+ I(p;H) +O(K(`, n,K(n, `), c)) +O(log(I(p;H))

c <O(K(c)).

which is a contradiction for large enough c dependent solely on the universal Turing machine U .�
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Chapter 8

Kolmogorov Birthday Paradox

8.1 Introduction

We prove a Kolmogorov complexity version of the birthday paradox. If you randomly select 2n/2

strings of length n, then, with overwhelming probability, you will have selected at least two strings
x and y with low K(x|y). This is true for all probabilities with low mutual information with the
halting sequence. The function K is the prefix-free Kolmogorov complexity.

To prove this fact, we first prove an interesting property about bunches of finite strings. A
(k, l)-bunch is a finite set of strings X where l > maxx,y∈X K(y|x) and 2k < |X|. Bunches were
introduced in [Rom03], but we use a slightly different definition. Although bunches have only two
parameters, they exhibit many interesting properties. Both [Rom03] and [Rom22] proved the ex-
istence of strings that are simple to each member of the bunches. That is, there exists a string
z such that K(z|x) < O(l − k) + K(l) and K(x|z) < l + O(l − k) + K(l), for all x ∈ X. In
[Eps21c], it was proven that each bunch has a member that is simple relative to all members of
the bunch, similar to the above definition. If not, then the bunch has high mutual information
with the halting sequence. The mutual information between a string and the halting sequence is
I(x;H) = K(x) − K(x|H). We prove that if a nonexotic bunch X has many members and low
maxx,y∈X,x6=y K(y|x), then it will have two elements x, y with very low K(y|x). A string (or any
object that it is represented by) is exotic if it has high mutual information with the halting sequence.

Theorem. For (k, l)-bunch X, minx,y∈X,x 6=y K(y|x) <log dl − 2ke+ + I(X;H) + 2K(k, l).

The Kolmogorov Birthday Paradox. Let us say we select a random subset D of size 2n/2

consisting of (possibly repeated) strings of length n, where each string is selected independently
with a uniform probability. For the simple Kolmogorov birthday paradox, with overwhelming prob-
ability, there are two (possibly the same) strings x, y ∈ D, such that K(x|y) = O(1), for a large
enough constant. This is due to reasoning from the classical birthday paradox. We now prove the
general Kolmogorov birthday paradox. Let P be any probability over sets D consisting of 2n/2 (non
repeated) strings of length n. Since D ⊂ {0, 1}n, for all D, maxx,y∈D K(x|y) <+ n. By Corollary

1, PrD∼P [I(D;H) > I(P ;H) +m]
∗
< 2−m. Combining these facts with the above theorem, with

l = n+O(1) and k = .5n− 1, we obtain the following result.

Corollary. PrD∼P
[

minx,y∈D,x6=y K(x|y) <log I(P ;H) + 2K(n) + c
]
> 1− 2−c.

Obviously, the bound loosens if P samples sets of smaller size, mirroring the classical birthday

23



Figure 8.1: The domain of a Turing machine T can be interpreted as the [0, 1] interval,
and the strings for which T halts can be seen as a collection of dyadic subintervals. A
left-total machine L has the property that if L halts on a string x, then it will halt on
a string y whose binary interval is smaller (i.e., to the left of x). The infinite sequence
B is called the border sequence and is the binary expansion of Chaitin’s Omega. This
paper uses a left-total universal Turing machine.

paradox.

8.2 Related Work

The study of Kolmogorov complexity originated from the work of [Kol65]. The canonical self-
delimiting form of Kolmogorov complexity was introduced in [ZL70] and treated later in [Cha75].
The universal probability m was introduced in [Sol64]. More information about the history of the
concepts used in this paper can be found in textbook [LV08].

The main result of this paper is an inequality including the mutual information of the encoding
of a finite set with the halting sequence. A history of the origin of the mutual information of a
string with the halting sequence can be found in [VV04].

A string is stochastic if it is typical of a simple elementary probability distribution. A string
is typical of a probability measure if it has a low deficiency of randomness. The deficiency of
randomness of a number a ∈ N with respect to a probability P is d(a|P ) = − logP (a)−K(a|〈P 〉).
It is a measure of the extent of the refutation against the hypothesis P given the result a [G2́1].
Thus, the stochasticity, Ks(a), of a string a is roughly min probability P K(P ) +O(log d(a|P )).

In the proof of Theorem 16, the stochasticity measure of encodings of finite sets is used. The
notion of the deficiency of randomness with respect to a measure follows from the work of [She83]
and is also studied in [KU87, V’Y87, She99]. Aspects involving stochastic objects were studied
in [She83, She99, V’Y87, V’Y99].

This work uses the notion of left-total machine (see Figure 8.1) and the notion of the infinite
“border” sequence, which is equal to the binary expansion of Chaitin’s Omega (see Section 9.3).
The works of [VV04, GTV01] introduced the notion of using the prefix of the border sequence to
define strings into a two-part code. This paper uses the lemmas found in [Eps21a].

This paper can be seen as a conditional variant to the main result in [Lev16]. [Lev16] proved
that for nonexotic sets D, the a priori probability, m, of a set is concentrated on a single element.

Theorem. ([Lev16]) − log maxx∈D m(x) <log − log
∑

x∈D m(x) + I(D;H).

There is a simple proof for this theorem in [She12]. The proof of Theorem 16 is similar to that
of the main result in [Lev16], in that they both first prove stochasticity, Ks(O), of an object O
with certain properties and then show that this object has high I(O;H). In [Lev16], O is equal to
a set, and in this paper, O is equal to a (sub)graph. Theorem 17 is not directly implied by the
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theorem in [Lev16] because this paper addresses conditional complexities between elements of a set.
In addition, Theorem 17 is not a generalization of the main theorem in [Lev16] because it relies on
the parameters of bunches and not the a priori probability m.

8.3 Labeled Graph, Warm Up

In Section 8.4, a property of a complete subgraph of a labeled graph is proven. A labeled graph is
a directed graph such that each vertex has a unique string attached to it. Given certain properties
of the graph G = (GE , GV ), where GE are the directed edges, GV are the vertices, and subgraph
J = (JE , VV ), Theorem 16 in Section 8.4 proves that J is guaranteed to have an edge (x, y) ∈ JE
with low K(x|y). In this section, we describe the overall arguments in the proof of this theorem.

We specify a vertex interchangeably with the string assigned to it. The general argument for
the proof of Theorem 16 is as follows. Given a labeled graph G, if there is a random subgraph
F = (FE , FV ) that is large enough, then it will probably share an edge with most large complete
subgraphs J of G. Thus, large complete subgraphs of G with an empty intersection with F will be
considered atypical. If F shares an edge with complete subgraph J ⊆ G, then

min
(x,y)∈JE

K(y|x) / log max
x∈FV

OutDegree(x) + K(F ).

This inequality follows from the fact that given a description of F describing {(x, y) : (x, y) ∈
FE} and an x ∈ F , each y ∈ {y : (x, y) ∈ FE} can be described relative to x with dlog OutDegree(x)e
bits. In this section, instead of using random subgraphs, we use random lists of vertices L•, indexed
by x ∈ GV . Thus, for each x ∈ GV , Lx is a list of vertices, possibly with repetition. This allows
for easier manipulation.

The warm-up arguments are as follows. Let G = (GE , GV ) be a graph of max degree 2l and
J be the set of complete subgraphs of G of size 2k. We assume l > 2k. Each vertex x ∈ GV has
a random list Lx of 2l−2k vertices, where for i ∈ [1, 2l−2k], Pr(y = Lx[i]) = [(x, y) ∈ GE ]2−l and
Pr(∅ = Lx[i]) = 1−OutDegree(x)2−l. For J ∈ J , indexed list L•,

Miss(J, L•) is true iff ∀x,∀y ∈ JV , y 6∈ Lx.

For each J ∈ J ,

Pr(Miss(J, L•)) =
∏
x∈JV

Pr(∀y ∈ JV , y 6∈ Lx)

≤
∏
x∈JV

∏
i∈[1,2l−2k]

Pr[∀y ∈ JV , y 6= Lx[i]]

≤
∏
x∈JV

(
1− 2k−l

)|Lx|
≤
∏
x∈JV

(
1− 2k−l

)2l−2k

≤
(

(1− 2k−l)2l−2k
)|J |

≤
(
e−2−k

)|J |
< e−1 < 1.
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Now assume that |Lx| = b2l−2k for all x ∈ GV , i.e., b times more than before. It is not hard to
see that Pr(Miss(J, L•)) < e−b for each J ∈ J . We assume a uniform distribution U over J (i.e.
complete subgraphs of size 2k). Under this assumption,

E
[
[Miss(J, L•)]

]
<
∑
J∈J
|J |−1e−b = e−b.

Thus, given all the parameters, G, k, l, and b, using brute force search, one can find a set of lists
L′• of size b2l−2k indexed by x ∈ GV , such that less than e−b of members J of J have Miss(J, L′•).
If Miss(J, L′•) is true for J ∈ J , then it must be atypical of U because EJ∼U [Miss(J, L′•)] < e−b.
One can construct a U-test using L′•. A U-test is any function t : {0, 1}∗ → R≥0 such that∑

J∈J t(J)U(J) ≤ 1. Thus, t · U is a semimeasure, and therefore,

K(J |t,U) <+ − log t(J)U(J). (8.1)

Thus, the function t(J) = [Miss(J, L′•)]e
b is a U-test, with

∑
J∈J t(J)U(J) < 1. We set aside the

parameters (G, k, l, b,U) because they complicate the discussion. That is, we roll the parameters
into the additive constants of the inequalities. By the definition of randomness deficiency,

d(J |U) = − logU(J)−K(J |U)

>+ log |J | −K(J |L′•) (8.2)

>+ log |J | −K(J |t) (8.3)

>+ log |J |+ log t(J)U(J) (8.4)

>+ log |J |+ log t(J)|J |−1

>+ b log e.

Equation 8.2 has two components. The first term log |J | is equal to − logU(J) because U is the
uniform distribution over all J 3 J , the set of all complete subgraphs of G of size 2k. The second
term is due to the additive equalities

K(J |L′•) = K(J |L′•, G, k, l, b,U) =+ K(J |G, k, l, b,U) =+ K(J |U),

in that given all the hidden parameters (G, k, l, b,U), one can compute L′• using brute force search,
as described above. Equation 8.3 derives from the test t being constructed from L′• (and the hidden
parameters). Equation 8.4 is due to the properties of the tests, as shown in Equation 8.1.

Thus, all complete subgraphs J ∈ J of G for which Miss(J, L′•) is true will be atypical of U ,
with randomness deficiency d(J |U) greater than b. Thus, if a subgraph J ∈ J is b-typical, then
there exists (x, y) ∈ JE , with y ∈ Lx. Therefore, b-typical subgraphs J ∈ J will have

min
(x,y)∈JE

K(y|x) <+ log
∣∣Lx∣∣ <+ l − 2k + log b. (8.5)

For Theorem 16, the uniform probability measure U is replaced by a special computable measure P
that realizes the stochasticity Ks of the subgraph J . In addition, b is chosen to equal b ≈ d(J |P )
so that the subgraph J is guaranteed to be typical of P , so Miss(J) is false. This means that
Equation 8.5 holds for J . In addition, in the next section, the parameters (G, k, l, b) must be taken
into account.
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Figure 8.2: The above diagram is a graphical representation of κ and L•, assuming that
cd2`−2k = 4. Each vertex has four edges chosen at random, where each particular edge
is chosen with probability 2−`.

8.4 Labeled Graphs

In this section, we study exotic subgraphs of simple labeled graphs. A subgraph J is exotic if
consists of labeled edges (x, y) ∈ JE , such that the conditional complexity K(y|x) is high. The
proof of the following theorem uses stochasticity Ks. An example proof that uses Ks and mirrors
the proof of Theorem 16 can be found in Appendix 8.8. Note that the lemma in Appendix 8.8 is
just an exercise to demonstrate reasoning with Ks. The lemma is not used in the paper.

Theorem 16 For graph G = (GE , GV ), complete subgraph J = (JE , JV ); if 2l > max Outdegree(G),
2k < |J |, then we have min(x,y)∈JE K(y|x) <log dl − 2ke+ + I(J ;H|G, k) + K(G, k).

Proof. We put (G, k) on an auxiliary tape to the universal Turing machine U . Thus, all algorithms
have access to (G, k), and all complexities implicitly have (G, k) as conditional terms.

Let ` = max{l, 2k}. Let P be the probability that realizes Ks(J) and the deficiency of ran-
domness d = max{d(J |P ), 1}. Let V : G × G → R≥0 be a conditional probability measure
where V (y|x) = [(x, y) ∈ GE ]2−` and V (∅|x) = 1 − OutDegree(x)2−`. We define a conditional

probability measure over lists L of cd2`−2k vertices of G, with κ : G × Gcd2`−2k → R≥0, where
κ(L|x) =

∏
y∈L V (y|x). The constant c ∈ N will be determined later. Let L• be an indexed

list of cd2`−2k elements, indexed by x ∈ G, where each list is denoted by Lx for x ∈ GV . Let
κ(L•) =

∏
x∈G κ(Lx|x). A graphical representation of κ and L• can be found in Figure 8.2. For

indexed list L• and graph H = (HE , HV ), we use the indicator i(L•, H) = [Complete H ⊆ G, 2k <
|HV |, ∀(x, y) ∈ HE , y 6∈ Lx].

EL•∼κEH∼P [i(L•, H)] ≤
∑
H

P (H) Pr
L•∼κ

(∀(x, y) ∈ HE , y 6∈ Lx, |HV | > 2k, Complete H ⊆ G)

≤
∑
H

P (H)[|HV | > 2k]
∏
x∈HV

(1− 2k−`)|Lx|

≤
∑
H

P (H)[|HV | > 2k]
∏
x∈HV

(1− 2k−`)cd2`−2k

≤
∑
H

P (H)[|HV | > 2k]
∏
x∈HV

e−cd2−k

<
∑
H

P (H)e−cd

= e−cd.
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Figure 8.3: The above diagram is a graphical representation of the concepts used in
the proof of Theorem 16. The main ellipse models the graph G, and the circles in the
graph represent complete subgraphs (labeled H1 to H5 and J) with > 2k vertices. Each
subgraph is in the support of probability P , represented by the dotted lines. The set
L′• represents a collection of selected edges. If a subgraph Hi does not contain an edge
in L′•, then Hi is atypical and has a high score t(Hi). By design, J is typical and thus
shares an edge with L′•.

Thus, there exists an L′• such that EH∼P [i(L′•, H)] < e−cd. This L′• can be found with brute force
search with all the parameters, with

K(L′•|P, c, d) = O(1). (8.6)

Thus, t(H) = i(L′•, H)ecd is a P test, where EH∼P [t(H)] ≤ 1. This test t gives a high score to
complete subgraphs of G of size > 2k that have no intersecting edges with L′•. A diagram of the
components used in this proof can be found in Figure 8.3. Furthermore,

K(t|P, c, d) =+ K(t|L′•, P, c, d) = O(1).

It must be that there is an (x, y) ∈ JE where y ∈ Lx. Otherwise, tL•(J) = ecd and
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K(J |P, c, d) <+ K(J |t, P, c, d)

K(J |P, c, d) <+ − log t(J)P (J) (8.7)

<+ −(log e)cd− logP (J)

(log e)cd <+ − logP (J)−K(J |P, c, d)

(log e)cd <+ − logP (J)−K(J |P ) + K(c, d)

(log e)cd <+ d+ K(c, d),

which is a contradiction for large enough c solely dependent on the universal Turing machine U .
Equation 8.7 is due to Equation 8.1. The constant c is folded into the additive constants of the
inequalities of the rest of the proof. Thus, since there exists (x, y) ∈ JE where y ∈ Lx,

K(y|x) <+ log |L′x|+ K(L′•)

<+ dl − 2ke+ + log d+ K(L′•|P, d) + K(P, d)

<+ dl − 2ke+ + log d+ K(P, d) (8.8)

<+ dl − 2ke+ + 3 log d+ K(P )

<+ dl − 2ke+ + Ks(D) (8.9)

Equation 8.8 is due to Equation 8.6. Equation 8.9 is due to the definition of stochasticity. We now
make the relativization of (G, k) explicit, with

K(y|x,G, k) <+ dl − 2ke+ + Ks(J |G, k)

<log dl − 2ke+ + I(J ;H|G, k) (8.10)

K(y|x) <log dl − 2ke+ + I(J ;H|G, k) + K(G, k).

Equation 8.10 is due to Lemma 10 in [Eps21a], which states Ks(x) < I(x :H) +O(K(I(x :H))).�

8.5 Warm Up for the Main Theorem of the Paper

Theorem 16 can be used to prove results about the minimum conditional complexity between two
elements of a bunch. This section gives a broad overview of the arguments used in the proof of
Theorem 17. Let X ⊂ {0, 1}∗ be a (k, l)-bunch, where |X| > 2k, and maxx,y∈X K(y|x) < l.

Let Kr(x|y) = min{‖p‖ : Uy(p) = x in time r} be the conditional complexity of x given y at
time r. Therefore, given a number r, Kr is computable. We also assume Kr(x|y) = ∞ if ‖y‖ > r
to ensure that Kr has finite {(x, y) : Kr(x|y) < ∞, x, y ∈ N} for each r. Let Gr = (GrE , G

r
V ) be a

graph defined by (x, y) ∈ GrE iff Kr(x|y) < l.
Let s be the smallest number where Ks(x|y) < l, for all x, y ∈ X. Let G = (GE , GV ) = Gs.

Since X is a (k, l)-bunch, X can be viewed as a complete subgraph of G of size >2k. Invoking
Theorem 16, we obtain

min
(x,y)∈X,x 6=y

K(y|x) <log dl − 2ke+ + I(X;H|G, k) + K(G, k). (8.11)

We have K(s|G) <+ K(l) because s = min{r : G = Gr}. Therefore,

K(X|G) <+ K(X|s) + K(s|G) <+ K(X|s) + K(l). (8.12)
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Due to the definition of G = Gs,

K(G|s) <+ K(l). (8.13)

By the definition of I,

I(X;H|G, k) = K(X|G, k)−K(X|G, k,H)

= K(X|G)−K(X|G,H) +O(K(k))

<+ K(X|s)−K(X|G,H) +O(K(k, l)) (8.14)

< K(X|s)−K(X|s,H) + K(G|s) +O(K(k, l))

< I(X;H|s) +O(K(k, l)). (8.15)

Equation 8.14 is due to Equation 8.12. Equation 8.15 is due to Equation 8.13. Using K(G) <+

K(s) + K(l) and Equation 8.15, we obtain

I(X;H|G, k) + K(G, k) < I(X;H|s) + K(s) +O(K(k, l)). (8.16)

Combining Equations 8.11 and 8.16, we obtain

min
(x,y)∈JE

K(y|x) <log dl − 2ke+ + I(X;H|s) + K(s) +O(K(k, l)). (8.17)

This inequality is close to the form of Theorem 17. The main difference is that the number s
appears in Equation 8.17. This can be rectified if we use a different notion of a computational
resource. In the next section, we introduce left-total universal machines, and the resource used is
not a number s but a so-called total string b. Then, Lemma 4, defined in Section 9.3, can be used
to remove the b factor from the final inequality.

8.6 Left-Total Machines

We recall that for x ∈ {0, 1}∗, Γx = {xβ : β ∈ {0, 1}∞} is the interval of x. The notions of total
strings and the “left-total” universal algorithm are needed in this paper. We say x ∈ {0, 1}∗ is
total with respect to a machine if the machine halts on all sufficiently long extensions of x. More
formally, x is total with respect to Ty for some y ∈ {0, 1}∗∞ iff there exists a finite prefix-free set
of strings Z ⊂ {0, 1}∗ where

∑
z∈Z 2−‖z‖ = 1 and Ty(xz) 6=⊥ for all z ∈ Z. We say (finite or

infinite) string α ∈ {0, 1}∗∞ is to the “left” of β ∈ {0, 1}∗∞ and use the notation α C β if there
exists an x ∈ {0, 1}∗ such that x0vα and x1vβ. A machine T is left-total if for all auxiliary
strings α ∈ {0, 1}∗∞ and for all x, y ∈ {0, 1}∗ with xC y, one has that Tα(y) 6=⊥ implies that x is
total with respect to Tα. Left-total machines were introduced in [Lev16]. An example can be seen
in Figure 8.4.

For the remainder of this paper, we can and will change the universal self-delimiting machine
U into a universal left-total machine U ′ by the following definition. The algorithm U ′ orders all
strings p∈{0, 1}∗ by the running time of U when given p as an input. Then, U ′ assigns each p an
interval ip⊆[0, 1] of width 2−‖p‖. The intervals are assigned “left to right”, where if p ∈ {0, 1}∗ and
q ∈ {0, 1}∗ are the first and second strings in the ordering, then they will be assigned the intervals
[0, 2−‖p‖] and [2−‖p‖, 2−‖p‖+ 2−‖q‖], respectively.

Let the target value of p ∈ {0, 1}∗ be (p)∈W, which is the value of the string in binary. For
example, the target value of both strings 011 and 0011 is 3. The target value of 0100 is 4. The
target interval of p ∈ {0, 1}∗ is Γ(p) = ((p)2−‖p‖, ((p)+1)2−‖p‖).
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Figure 8.4: The above diagram represents the domain of a left-total machine T with
the 0 bits branching to the left and the 1 bits branching to the right. For i ∈ {1, . . . , 5},
xi C xi+1 and xi C y. Assuming T (y) halts, each xi is total. This also implies that each
x−i is total.

The universal machine U ′ outputs U(p) on input p′ if the intervals Γ(p′) are strictly contained
in ip, with Γ(p′) ⊂ ip, and Γ(p′−) are not strictly contained in ip, with Γ(p′−) 6⊂ ip. The same
definition applies to machines U ′α and Uα over all α∈{0, 1}∗∞.

Recall that a function f : N → N is partially computable with respect to U if there is a string
t ∈ {0, 1}∗ such that f(x) = U(t〈x〉) when f(x) is defined and U(t〈x〉) does not halt otherwise.
Similarly, a function f : N → N is partially computable with respect to U ′ if there is t ∈ {0, 1}∗,
such that whenever f(x) is defined, there is an interval it〈x〉 and for any string p where Γ(p) and
not that of Γ(p−) is contained in it〈x〉, then U ′(p) = f(x). Otherwise, if f(x) is not defined, the
interval it〈x〉does not exist. The following proposition was used without being proven in [Lev16].

Proposition 4 KU (x|y) =+ KU ′(x|y).

Proof. It must be that KU (x|y) <+ KU ′(x|y) because there is a Turing machine that computes
U ′. Therefore, due to the universality of U , there is a t ∈ {0, 1}∗, such that Uy(tx) = U ′y(x),
thus proving the minimality of KU . It must be that KU ′(x|y) <+ KU (x|y). This is because if
U(x) = z, then there is interval ix such that for all strings p where Γ(p) and not that of Γ(p−) that
are strictly contained in ix has U ′y(p) = Uy(x). Thus, we have that ‖p‖ ≤ ‖x‖ + 2. This implies
that KU ′(x|y) ≤ KU (x|y) + 2. �

For the rest of the paper, we now set U to be equal to U ′, so the universal Turing machine can
be considered to be left-total. Without loss of generality, as shown in Proposition 4, the complexity
terms of this paper are defined with respect to the universal left-total machine U .

Proposition 5 There exists a unique infinite sequence B with the following properties.

1. All the finite prefixes of B have total and nontotal extensions.

2. If a finite string has total and nontotal extensions, then it is a prefix of B.

3. If a string b is total and b− is not, then b− @ B.
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Proof.

1. Let Ω ∈ R be Chaitin’s Omega, the probability that a random sequence of bits halts when
given to U , with Ω =

∑
p∈{0,1}∗ [U(p) halts]2−‖p‖. Thus, Ω characterizes the domain of U , with⋃

p∈{0,1}∗ ip = [0,Ω). Let B ∈ {0, 1}∞ be the binary expansion of Ω, which is an ML random
string. For each n ∈ N, let bn @ B, ‖bn‖ = n. Let m ∈ W be the smallest whole number
such that bn1(m)0 @ B. Then, bn1(m+1) is a nontotal string because [0,Ω] ∩ Γ(bn1(m+1)) = ∅.
Furthermore, let m ∈W be the smallest whole number such that bn0(m)1 @ B. Then, bn0(m+1)

is a total string because Γ(bn0(m+1)) ⊂ [0,Ω).

2. Assume there are two strings x and y of length n that have total and nontotal extensions,
with x C y. Since y has total extensions, there exist z such that U ′(yz) halts. Since x C yz,
by the definition of left-total machines, x is total, causing a contradiction.

3. This is because b− has total and nontotal extensions.

�
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v
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1

1

1

b b

Figure 8.5: The above diagram represents the domain of the universal left-total al-
gorithm U ′, with 0 bits branching to the left and 1 bits branching to the right. The
strings in the above diagram, 0v0 and 0v1, are halting inputs to U ′ with U(0v0) 6=⊥ and
U(0v1) 6=⊥. Therefore, 0v is a total string. The infinite border sequence B ∈ {0, 1}∞
represents the unique infinite sequence such that all its finite prefixes have total and
nontotal extensions. All finite strings branching to the right of B will cause U ′ to diverge.

We call this infinite sequence B, “border” because for any string x ∈ {0, 1}∗, xCB implies that
x is total with respect to U and B C x implies that U will never halt when given x as an initial
input. Figure 8.5 shows the domain of U ′ with respect to B. We now set U to be equal U ′. Without
loss of generality, as shown in Proposition 4, the complexity terms of this paper are defined with
respect to the universal left-total machine U .

For total string b, we define the busy beaver function, bb(b) = max{‖x‖ : U(p) = x, pCb or p w
b}. For total string b, the b-computable complexity of string x with respect to string y ∈ {0, 1}∗∞
is Kb(x|y) = min{‖p‖ : Uy(p) = x in bb(b) time and‖y‖ ≤ bb(b)}. If b and c are total, and bC c,
then Kb ≥ Kc. In addition, if b and b− are total, then Kb ≥ Kb− .
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The following lemma shows that if a prefix of the border sequence is simple relative to a string
x, then it will be the common information between x and the halting sequence H.

Lemma 4 If b ∈ {0, 1}∗ is total and b− is not, and x ∈ {0, 1}∗, then K(b) + I(x;H|b) <log

I(x ;H) + K(b|x).

Proof. By Proposition 5, b− @ B is a prefix of the border sequence and thus ‖b‖ <+ K(b). Since
B is computable from the halting sequence H, we have that b is computable from ‖b‖ and H, with
K(b|H) <+ K(‖b‖). The chain rule gives the equality K(b)+K(x|b,K(b)) =+ K(x)+K(b|x,K(x)).
Combined with the inequalities K(x|b) <+ K(x|b,K(b)) + K(K(b)) and K(b|x,K(x)) <+ K(b|x),
we get

K(b) + K(x|b) <+ K(x) + K(b|x) + K(K(b)).

Subtracting K(x|b,H) from both sides results in

K(b) + K(x|b)−K(x|b,H) <+ K(x) + K(b|x) + K(K(b))−K(x|b,H)

<+ K(x) + K(b|x) + K(K(b))−K(x|H) + K(b|H).

<+ I(x;H) + K(b|x) + K(K(b)) + K(b|H)

< I(x;H) + K(b|x) +O(log ‖b‖)
<log I(x;H) + K(b|x).

�

8.7 Minimum Conditional Complexity

We recall that a (k, l)-bunch X is a finite set of strings where 2k < |X| and for all x, x′ ∈ X,
K(x|x′) < l. If l� k, such as the (k, l)-bunch consisting of two large independent random strings,
then it is difficult to prove properties about it. If l ≈ 2k, then interesting properties emerge.

Theorem 17 For (k, l)-bunch X, minx,y∈X,x 6=y K(y|x) <log dl − 2ke+ + I(X;H) + 2K(k, l).

Proof. We assume that the universal Turing machine U is left-total. Let b be a shortest total
string such that Kb(y|x) < l for all x, y ∈ X. We have

K(b|X) <+ K(‖b‖, l), (8.18)

as there is a program that, when enumerating total strings of length ‖b‖ from left to right, returns
the first string with the desired properties. The first total string found is b, as shown in Figure 8.6.
Thus, b− is not total, and by Proposition 5, b− @ B is a prefix of the border. For open parameter
total string c, let Gc be the graph defined by (x, y) ∈ GE iff Kc(y|x) < l. Let G = (GE , GV ) = Gb.
Thus if x, y ∈ X, then (x, y) ∈ GE . We have

K(G|b) <+ K(l) (8.19)

K(b|G) <+ K(‖b‖, l). (8.20)

Equation 8.19 is because G = Gb. Equation 8.20 is due to the existence of a program that enu-
merates total strings of length ‖b‖ (from left to right) and returns the first total string c such that
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Figure 8.6: The above diagram represents the domain of the universal left-total Turing
machine U and uses the same conventions as Figure 8.5, with 0s branching to the left
and 1s branching to the right. It shows all the total strings of length ‖b‖, including
b. The large diagonal line is the border sequence, B. A string c is marked green if
Kc(y|x) < l for all x, y ∈ X. By definition, b is a shortest green string. If x is green and
total, and x C y, and y is total, then y is green, since Kx ≥ Ky. Furthermore, if x is
green and total and x− is total, then x− is green, as Kx ≥ Kx− . It cannot be that there
is a green x C b with ‖x‖ = ‖b‖. Otherwise, x− is total, and thus, it is green, causing
a contradiction because it is shorter than b. This is shown in part (1). Furthermore,
there cannot be a green y, with b C y and ‖y‖ = ‖b‖. Otherwise, b− is total and thus
green, contradicting the definition of b. This is shown in part (2). Thus, b is unique,
and since b− is not total, by Proposition 5, b− is a prefix of the border, as shown in part
(3). Thus, an algorithm returning a green string of length ‖b‖ will return b.

G)E ⊆ GcE . It cannot be that there is a total string c shorter than b with G ⊆ Gc. Otherwise,
GcE ⊇ GE ⊇

(
X
2

)
, contradicting the definition of b being a shortest total string with Gb ⊇ X. Thus,

using this impossibility and the reasoning detailed in Figure 8.6, where y is green if G ⊆ Gy, the
program returns b. Theorem 16 gives x, y ∈ X, where

K(y|x) <log dl − 2ke+ + I(X;H|G, k) + K(G, k) (8.21)

The rest of the proof is a straightforward sequence of application of inequalities. We have

K(X|G) <+ K(X|b) + K(b|G)

<+ K(X|b) + K(‖b‖, l), (8.22)

where Equation 8.22 is due to Equation 8.20. We also have

K(X|b,H) < K(X|G,H) + K(G|b,H),

< K(X|G,H) + K(l), (8.23)

where Equation 8.23 is due to Equation 8.19. Therefore,

I(X;H|G) = K(X|G)−K(X|G,H)

<+ I(X;H|b) + K(l) + K(‖b‖, l). (8.24)

Combining Equations 8.21 and 8.24,

K(y|x) <log dl − 2ke+ + I(X;H|b) + K(G) + K(‖b‖) +O(K(k, l))

<log dl − 2ke+ + I(X;H|b) + K(b) + K(‖b‖) +O(K(k, l)) (8.25)

<log dl − 2ke+ + I(X;H|b) + K(b) +O(K(k, l)). (8.26)
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Equation 8.25 is due to Equation 8.19. Equation 8.26 is because the precision is (<log). Further-
more, since b is total and b− is not, by Proposition 5, b− @ B. The border B is the binary expansion
of Chaitin’s Omega (see Proposition 5), so b is random, with K(‖b‖) = O(log K(b)). Using Lemma
4 on Equation 8.26, we obtain

K(y|x) <log dl − 2ke+ + I(X;H) + K(b|X, ‖b‖) +O(K(k, l))

<log dl − 2ke+ + I(X;H) +O(K(k, l)) (8.27)

where Equation 8.27 is due to Equation 8.18. Adding (k, l) to the conditional on all terms results
in

K(y|x, k, l) <log dl − 2ke+ + I(X;H|k, l) +O(K(k, l|k, l))
<log dl − 2ke+ + I(X;H|k, l)

K(y|x) <log dl − 2ke+ + I(X;H) + 2K(k, l).

�

8.8 Warm-up Exercise in Stochasticity

The following proof demonstrates how the stochasticity term Ks can be used in mathematical
arguments. The general structure of the proof parallels the proof in Theorem 16. This lemma first
appeared (in a slightly different form) as Lemma 5 in [Eps21b]. The lemma itself is just an exercise
and is not used in the paper.

Lemma 5 For D⊆{0, 1}n, |D|=2s, minx∈D K(x) <log n− s+ Ks(D) +O(K(s, n)).

Proof. We put (n, s) on an auxiliary tape to the universal Turing machine U . Thus, all al-
gorithms have access to (n, s), and all complexities implicitly have (n, s) as conditional terms.
This can be done because the precision of the lemma is O(K(s, n)). Let Q realize Ks(D),
with d = max{d(D|Q), 1}. Thus, Q is an elementary probability measure over {0, 1}∗ and
D ∈ Support(Q), with randomness deficiency d.

Let F ⊆ {0, 1}n be a random set where each element a ∈ {0, 1}n is selected independently
with probability cd2−s, where c ∈ N is chosen later. Let Un be the uniform measure over {0, 1}n.
E[Un(F )] ≤ cd2−s. Furthermore,

E[Q({G : |G| = 2s, G ⊆ {0, 1}n, G ∩ F = ∅})] ≤
∑
G

Q(G)(1− cd2−s)2s < e−cd.

Thus, by the Markov inequality, W ⊆ {0, 1}n can be chosen such that Un(W ) ≤ 2cd2−s and
Q({G : |G| = 2s, G ⊆ {0, 1}n, G ∩W = ∅}) ≤ e1−cd.

K(W |Q, d, c) = O(1). (8.28)

It must be that D ∩W 6= ∅. Otherwise, we obtain a contradiction with the following reasoning.
Let t : {0, 1}∗ → R≥0 be a Q-test, with t(G) = [|G| = 2s, G ⊆ {0, 1}n, G ∩ W = ∅]ecd−1, and∑

GQ(G)t(G) ≤ 1. Thus, t gives a high score to sets G that do not intersect W . Therefore,

35



t(D) = ecd−1. We have

K(D|Q, d, c) <+ K(D|W,Q, d, c) (8.29)

<+ K(D|t,W,Q, d, c) (8.30)

<+ − logQ(D)t(D) (8.31)

<+ − logQ(D)− (log e)cd

(log e)cd <+ − logQ(D)−K(D|Q) + K(d, c)

<+ d+ K(d, c),

which is a contradiction for a large enough c dependent solely on the universal Turing machine.
Equation 8.29 is due to Equation 8.28. Equation 8.30 is because the test t can be computed from
(W, c, d). Equation 8.31 is due to Equation 8.1. Thus, there is an x ∈ D ∩ W . Thus, since
Un(W ) ≤ 2cd2−s, the function q(a) = [a ∈W ](2s/cd)Un(a) is a semimeasure. Therefore, we have

K(x) <+ − log q(x) + K(q) <+ n+ log d− s+ K(d) + K(Q) <+ n− s+ Ks(D).

�
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Chapter 9

On the Conditional Complexity of
Sets of Strings

9.1 Introduction

In [Rom03], a criteria for the amount of algorithmic information that can be extracted from a
triplet of strings was established. In that paper, the notion of bunches was introduced. A (k, l, n)
bunch is a finite set of strings X such that

1. |X| = 2k,

2. K(x1|x2) < l for all x1, x2 ∈ X,

3. K(x) < n for all x ∈ X.

The term K used above represents the conditional Kolmogorov complexity. In [Rom03], Theorem
5, it was shown that common information could be extracted from bunches.

Theorem 5. [Rom03] For any (k, l, n) bunch X, there exists a string z such that K(x|z) ≤
l +O(|l − k|+ log n) and K(z|x) = O(|l − k|+ log n) for any x ∈ X.

In this chapter, we revisit bunches and show that every bunch that is not exotic has an element
that is simple conditional to all other members. We show this over the class of non-exotic bunches,
that is bunches whose encoding has low mutual information with the halting sequence. We also
prove a similar result for a structure we call batches, which are defined in terms of expectation
instead of max. In this chapter, we use a slightly different definition of bunches (and batches),
where there are no assumptions about the Kolmogorov complexity of its elements. We define a
(k, l) bunch X to be a finite set of strings, where k = dlog |X|e, l > k, and for all x, x′ ∈ X,
K(x|x′) ≤ l. If l � k, such as the bunch consisting of two large independent random strings, then
it is difficult to proof properties about it. If l ≈ k, then interesting properties emerge, such as the
bunch theorem of this chapter. This theorem states when l ≈ k, then for non-exotic bunches, there
exists common information in the form of a member of this bunch which is simple relative to all
other strings of the bunch. Otherwise the bunch is exotic, in that it has high mutual information
with the halting sequence. The bunch theorem of this chapter is as follows.

Theorem. For (k, l) bunch X, minx∈X maxx′∈X K(x|x′) <log 2(l − k) + I(X;H).
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We also prove a similar result using expectation instead maximum. We define a (k, l) batch X
to be a finite set of strings, where k = dlog |X|e, l > k, and for all x ∈ X, Ex′∈X [K(x|x′)] ≤ l.

Theorem. For (k, l) batch X, minx∈X Ex′∈X [K(x|x′)] <log l − k + I(X;H).

The halting sequence is H and the information that a sring x has with H is I(X;H). An
example of an exotic bunch is Rn, the set of all random strings of size n, where x ∈ Rn iff ‖x‖ = n
and K(x) >+ n. It is not hard to see that for all x, x′ ∈ Rn, K(x|x′) <log n. So Rn is a
(n − O(1), n + O(log n)) bunch. In addition, because Rn contains all random strings of size n,
minx∈X maxx′∈X K(x|x′) >log n. Thus Rn does not have such a conditionally simple element, and
this implies it is exotic, because, due to the bunch theorem introduced above, n <log I(Rn;H). This
bound is easily verifiable using the definition of Rn, since K(Rn) >+ n and K(Rn|H) <+ K(n),
because given the halting sequence and n, there exists a simple program that can produce all
random strings of size n.

Another example of a bunch is the set Sx,m, where x is a string of arbitrary length, and
Sx,m = {xy : y is a string of length m}. This bunch is usually not exotic. It must be that for
maxy,x′∈Sx,m K(y|x′) <+ m + K(m) as all strings in Sx,m differ by a substring of size m. Fur-
thermore #Sx,m = m. Therefore Sx,m is a (m,m + K(m) + O(1)) bunch. Since x and m can be
recovered from an encoding of the the set Sx,m, and of course Sx,m can be created from x and m,
we have that I(Sx,m;H) =+ I(x,m;H) < I(x;H) + O(K(m)). So by the above bunch theorem,
miny∈Sx.m maxx′∈Sx,m K(y|x′) <log 2K(m) + I(Sx,m;H) <log I(x;H) + O(K(m)). Most x has neg-
ligible information with the halting sequence, relative to its length. Furthermore it can be seen
independently that miny∈Sx,m maxx′∈Sx,m K(y|x′) <+ K(m), because for y = x0m ∈ Sx,m, there is
a program that given any member of Sx,m and a program for m, can output y.

9.2 Related Work

The study of Kolmogorov complexity originated from the work of [Kol65]. The canonical self-
delimiting form of Kolmogorov complexity was introduced in [ZL70] and treated later in [Cha75].
The universal probability m was introduced in [Sol64]. More information about the history of the
concepts used in this chapter can be found in the textbook [LV08].

The two main results of this chapter, involving bunches and batches, are inequalities including
the mutual information of the encoding of a finite set with the halting sequence. A history of the
origin of the mutual information of a string with the halting sequence can be found in [VV04].

A string is stochastic if it is typical of a simple elementary probability distribution. A string is
typical of a probability measure if it has a low deficiency of randomness. In the proofs of Theorems
19 and 20, the stochasticity measure of encodings of finite sets is used. The notion of the deficiency
of randomness with respect to a measure follows from the work of [She83], and also studied in [KU87,
V’Y87, She99]. Aspects involving stochastic objects were studied in [She83, She99, V’Y87, V’Y99].

This work uses the notion of left total machine and the notion of the infinite “border” sequence,
which is equal to the binary expansion of Chaitin’s Omega, (see Section 9.3). The works of [VV04,
GTV01] introduced the notion of using the prefix of the border sequence to define strings into a
two part code.

This chapter can be seen as an update to main result in [Eps19, Lev16], focusing on conditional
complexity instead of algorithmic probability. An accessible game-theoretic proof to [EL11, Lev16]
can be found in [She12]. Bunches were first introduced by [Rom03], who used them to prove
properties of common information of strings.
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9.3 Left-Total Machines

The notions of total strings and the “left-total” universal algorithm are needed in the remaining
sections of the paper. We say x ∈ {0, 1}∗ is total with respect to a machine if the machine halts
on all sufficiently long extensions of x. More formally, x is total with respect to Ty for some
y ∈ {0, 1}∗∞ iff there exists a finite prefix free set of strings Z ⊂ {0, 1}∗ where

∑
z∈Z 2−‖z‖ = 1

and Ty(xz) 6=⊥ for all z ∈ Z. We say (finite or infinite) string α ∈ {0, 1}∗∞ is to the “left” of
β ∈ {0, 1}∗∞, and use the notation αC β, if there exists a x ∈ {0, 1}∗ such that x0vα and x1vβ.
A machine T is left-total if for all auxiliary strings α ∈ {0, 1}∗∞ and for all x, y ∈ {0, 1}∗ with
x C y, one has that Tα(y) 6=⊥ implies that x is total with respect to Tα. A detailed discussion of
Left-total machines can be found in Chapter 8.

9.4 Stochasticity

In algorithmic statistics, a string is stochastic if it is typical of a simple probability measure.
Properties of stochastic (and non-stochastic) strings can be found in the survey [VS17]. The
deficiency of randomness of x with respect to elementary probability measure Q and v ∈ {0, 1}∗ is
d(x|Q, v) = d− logQ(x)e−K(x|v). The function d(·|Q, v) is a Q-test (up to an additive constant).
It is also universal, in that for any lower semicomputable test d, and v ∈ {0, 1}∗, for all x ∈ {0, 1}∗,
d(x|Q, v) <+ d(x|Q, v) + K(d|v) + K(Q|v), as shown in [G2́1].

For some j, k ∈ N, we say that x ∈ N is (j, k)-stochastic if there exists v ∈ {0, 1}j , with
U(v) = Q, Q being an elementary probability measure, and d(x|Q, v) ≤ k. The stochasticity of
x ∈ N, is measured by Ks(x) = min{j + 3k :x is (j, k) stochastic}. The conditional stochasticity
form1 is represented by Ks(x|α), for α∈{0, 1}∗∞. The definition of stochasticity can be changed
to minimizing j + ck for any constant c ≥ 3, and the proofs will still hold.

Stochasticity follows non-growth laws; a total computable function cannot increase the stochas-
ticity of a string by more than a constant factor dependent on its complexity. Lemma 6 illustrates
this point. Another variant of the same idea can be found in Proposition 5 in [VS17].

Lemma 6 Given total computable function f : {0, 1}∗ → {0, 1}∗, Ks(f(x)) < Ks(x) +O(K(f)).

Proof. Let v ∈ {0, 1}∗ realize Ks(x), with U(v) = Q, ‖v‖ + 3 max{d(x|Q, v), 1} = Ks(x). Let
f(Q) be the image distribution of Q with respect to f . Thus f(Q)(a) =

∑
b:f(b)=aQ(b). The

function d(f(·)|f(Q), v) is a Q test (relative to v and up to an additive constant), because∑
a∈{0,1}∗

2d(f(a)|f(Q),v)Q(a) =
∑

b∈{0,1}∗
2d(b|f(Q),v)f(Q(b)) < O(1).

Also d(f(·)|f(Q), v) is lower semi-computable given v, with K(d(f(·)|f(Q), v)|v) <+ K(f |v). So
due to the universality of d, d(f(x)|f(Q), v) <+ d(x|Q, v) + K(f |v) <+ d(x|Q, v) + K(f). Let
v′ = v0vvf ∈ {0, 1}∗ compute f(Q), where v0 is helper code of size O(1) and vf is a shortest
program that computes f , with ‖vf‖ = K(f) . So ‖v′‖ <+ ‖v‖ + K(f). Since K(x|v) <+

1This is formally represented as Ks(x|α) = min{j + 3k : ∃v ∈ {0, 1}j , Uα(v) = 〈Q〉,d(x|Q, 〈v, α〉) ≤ k ∈ N}.
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K(x|v′) + K(v′|v) <+ K(x|v′) + K(f), we have that d(f(x)|f(Q), v′) <+ d(x|Q, v) +O(K(f)). So

Ks(f(x)) ≤ ‖v′‖+ 3 max{d(f(x)|f(Q), v′), 1}
<+ ‖v‖+ 3 max{d(f(x)|f(Q), v′), 1}+ K(f)

< ‖v‖+ 3 max{d(x|Q, v), 1}+O(K(f))

≤ Ks(x) +O(K(f)).

�
The following theorem is from [Eps19, Lev16]. Another proof of this theorem can be found

in [She12]. It states that sets that are not exotic, i.e. sets with low mutual information with the
halting sequence, have simple members that contain a large portion of the algorithmic weight of
the sets. It is compatible with this paper’s stochasticity definition because the term Ks used in
this paper is larger than the stochasticity measure used in [Eps19, Lev16].

Theorem 18 For finite set D ⊂ {0, 1}∗, minx∈D K(x) <+ d− log m(D)e + 2K(d− log m(D)e) +
Ks(D).

9.5 Batches

Recall that a (k, l) batch X is a finite set of strings, where k = #X, l > k, and for all x ∈ X,
Ex′∈X [K(x|x′)] ≤ l. The following theorem states that for non-exotic batches, there is an element
of X that is simple, on average, conditional to all other members of X.

Theorem 19 For (k, l) batch X, minx∈X Ex′∈X [K(x|x′)] <log l − k + I(X;H).

Proof.

We can assume that k > 2, otherwise the theorem is trivially proven. Let b be the shortest
total string where maxy∈X Ex′∈X [K[b](y|x′)] < l + 2, dubbed property A. Thus K(b|X) <+

K(‖b‖, (l− k)). This is because, firstly, l can be constructed from (l − k) and X. This is be-
cause from X, one can compute #X, and thus k. Then from a program that computes (l − k)
and k, one can compute l. Secondly there exists a program that can enumerate all total strings
of length ‖b‖ from “left” to “right”. For each enumerated total string h of length ‖b‖, one can
compute K[h] for all strings, and thus maxy∈X Ex′∈X [K[h](y|x′)]. This program can select the first
one with property A. The first one selected will be b, otherwise there exists a b′ C b, ‖b′‖ = ‖b‖,
with property A. This implies there exists a total b′− with K[b′−] ≤ K[b′]. Thus property A holds
for b′−, contradicting the minimal length of b. This also implies b− is not total.

Let S = Supp(m[b]) be the support of m[b], which is finite. Let G be the infinite set of all func-
tions g : S → N. Since S is finite, each g ∈ G can be encoded in an explicit finite string. Let
κ : G → R≥0 be a probabilility measure where κ(g) =

∏
a∈S 2−g(a). So for all a ∈ S, it must be

that κ({g : g(a) = n}) = 2−n and κ({g : g(a) ≥ n}) = 2−n+1.

For any finite set H ⊂ {0, 1}∗, #H > 2, let GH1 be the set of functions g ∈ G, where there exists
xg ∈ H with g(xg) = #H − 2. Using the fact that (1−m)em ≤ 1 for m ∈ [0, 1], we have that

κ(G \GH1 ) ≤
∏
a∈H

(
1− 2−#H+2

)
≤
(

1− 2−#H+2
)2#H−1

≤ e−2−#H+22#H−1
= e−2 < 0.25.
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So κ(GH1 ) > 0.75.

We use measures P ′g(y|x′) : {0, 1}∗ → R≥0, indexed by g ∈ G and x′ ∈ S. The measure P ′ is defined

as P ′g(y|x′) = [δg(y, x
′) > 0]2−δg(y,x′)δg(y, x

′)−2 + [δg(y, x
′) ≤ 0], where δg(y, x

′) = K[b](y|x′)− g(y).
By the definition of measurement, for a set B ⊆ {0, 1}∗, we have that P ′g(B|x′) =

∑
a∈B P

′
g(a|x′).

We define a second set of functions GH2 = {g : Ex′∈H [P ′g(S|x′)] ≤ 8, g ∈ G}. The bound of 8 is
chosen to satisfy a Markov inequality later in the proof. So

Eg∼κEx′∈H [P ′g(S|x′)]
= |H|−1

∑
x′∈H,y∈S

Eg∼κ[P ′g(y|x′)]

= |H|−1
∑
x′∈H

∑
y∈S

K[b](y|x′)−1∑
c=1

2c−K[b](y|x′)(K[b](y|x′)− c)−2κ({g : g ∈ G, g(y) = c})


+ κ({g : g ∈ G, g(y) ≥ K[b](y|x′)})

≤ |H|−1
∑
x′∈H

∑
y∈S

m[b](y|x′)
K[b](y|x′)−1∑

c=1

(K[b](y|x′)− c)−2

+ 2−K[b](y|x′)+1

≤ |H|−1
∑
x′∈H

2m[b](S|x′) + 2m[b](S|x′) < 4.

So by the Markov inequality, κ(GH2 ) ≥ 0.5. So for all finiteH ⊂ {0, 1}∗, #H > 2, κ(GH1 ∩GH2 ) > 0.25.

We use the following probability measure Pg(y|x′), indexed by g ∈ G and x′ ∈ S, defined as
Pg(y|x′) = [y ∈ S]P ′g(y|x′)/P ′g(S|x′). Thus Pg({0, 1}∗|x′) = 1 for all x′ ∈ S, g ∈ G. So for any

g ∈ GH1 ∩ GH2 , there exists xg ∈ H where g(xg) = #H − 2 and also

Ex′∈H [− logPg(xg|x′)]
= Ex′∈H [− logP ′g(xg|x′) + logP ′g(S|x′)] (9.1)

= Ex′∈H [− logP ′g(xg|x′)] + Ex′∈H [logP ′g(S|x′)]
≤ Ex′∈H [− logP ′g(xg|x′)] + log Ex′∈H [P ′g(S|x′)]
<+ Ex′∈H [− logP ′g(xg|x′)] (9.2)

=+ Ex′∈H

[
[δg(xg, x

′) > 0](− log 2−δg(xg ,x′)δg(xg, x
′)−2) + [δg(xg, x

′) ≤ 0]
]

(9.3)

<+ Ex′∈H [max{δg(xg, x′) + 2 log δg(xg, x
′), O(1)}]

<+ max{Ex′∈H [δg(xg, x
′)] + 2 log Ex′∈H [δg(xg, x

′)], O(1)}
<+ max{Ex′∈H [K[b](xg|x′)− g(xg)] + 2 log Ex′∈H [K[b](xg|x′)− g(xg)], O(1)} (9.4)

<log max{Ex′∈H [K[b](xg|x′)]−#H,O(1)}. (9.5)

Equation 9.1, follows from definition of Pg. Equation 9.2 follows from the fact that g ∈ GH2 ,
and thus Ex′∈H [P ′g(S|x′)] ≤ 8. Equation 9.3 follows from the definition of P ′g. Equation 9.4 follows

from the definition of δg. Equation 9.5 follows from g ∈ GH1 and thus g(xg) = #H − 2.

Let {Gi} be a computable enumeration of all finite subsets of G. Let f be a function that when
given a set H ⊂ {0, 1}∗, #H > 2, outputs an encoding of the first finite subset W ⊂ G in the list
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{Gi} such that W ⊂ GH1 ∩GH2 and κ(W ) > 0.25. On all other inputs which are not an encoding of a
finite set H ⊂ {0, 1}∗ with #H > 2, f outputs the empty string. The function f is total computable
relative to b, with K(f |b) = O(1), because given H and b, it is computable to determine whether
a given function g ∈ G is in GH1 ∩ GH2 .

Let D = f(X). Invoking Theorem 18, conditional to b, gives g ∈ D, where K(g|b) <+

d− log m(D|b)e+ 2K(d− log m(D|b)e) + Ks(D|b). Since d− log m(D|b)e <+ − log κ(D) + K(κ|b) <
O(1), we have that K(g|b) <+ Ks(D|b). Lemma 6, relativized to b, using total computable function
f , gives K(g|b) <+ Ks(X|b). Lemma 1, gives

K(g|b) <log I(X;H|b). (9.6)

Since g ∈ D ⊂ GX1 ∩ GX2 , there exists xg ∈ X where, due to Equation 9.5,

Ex′∈X [− logPg(xg|x′)] <log max{Ex′∈X [K[b](xg|x′)]−#X,O(1)} <log l − k. (9.7)

So we have that

Ex′∈X [K(xg|b, x′)] <+ Ex′∈X [K(xg|b, g, x′) + K(g|b)]
=+ Ex′∈X [K(xg|b, g, x′)] + K(g|b)
< Ex′∈X [− logPg(xg|x′)] + I(X;H|b) +O(log I(X;H|b)) (9.8)

< l − k + I(X;H|b) +O(log I(X;H|b) + log(l − k)) (9.9)

Ex′∈X [K(xg|x′)−K(b)] < l − k + I(X;H|b) +O(log I(X;H|b) + log(l − k)) (9.10)

Ex′∈X [K(xg|x′)] < l − k + K(b) + I(X;H|b) +O(log(I(X;H|b) + K(b)) + log(l − k))

Equation 9.8 is due to Equation 9.6. Equation 9.9 is due to Equation 9.7. Equation 9.10 follows
that for all x′ ∈ X, K(xg|x′) <+ K(xg|b, x′) + K(b).

Ex′∈X [K(xg|x′)] <log l − k + I(X;H) + K(b|X) (9.11)

Ex′∈X [K(xg|x′)] <log l − k + I(X;H) + K(〈‖b‖, (l − k)〉). (9.12)

Ex′∈X [K(xg|x′)] <log l − k + I(X;H). (9.13)

Equation 9.11 is due to the invocation of Lemma 4. Equation 9.12 is due to the fact that K(b|X) <+

K(〈‖b‖, (l − k)〉). Equation 9.13 is because a <log b+O(log a) implies a <log b, where a = ‖b‖ <+

K(b) and b = I(X;H) +O(log ‖b‖). �

9.6 Bunches

Recall that a (k, l) bunch X is a finite set of strings, where k = #X, l > k, and for all x, x′ ∈ X,
K(x|x′) ≤ l. The following theorem states that for non-exotic bunches, there is an element of X
that is simple conditional to all other members of X.

Theorem 20 For (k, l) bunch X, minx∈X maxx′∈X K(x|x′) <log 2(l − k) + I(X;H).

Informal Proof.

This proof starts with the definition of elementary probability measure Q that realizes the stochas-
ticity of X. Using probabilistic arguments, we define a Q-test tg that gives a high score to a set
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Y if there does not exist a ∈ Y such that g(a) ' #Y . A measure is defined by Pg(x|y) ≈ [g(x) ≥
K[b](x|y)− z]2−z, where z = l− k. A second test t′g gives a set Y a zero score if more than half of
x′ ∈ Y makes Pg(·|x′) a semi-measure. By probabilistic arguments, there exists a function g such
that tg and t′g are Q-tests. Furthermore, since X is typical of Q, tg(X) = t′g(X) = 0. Thus there
exist xg ∈ X where g(xg) ≥ #X ≥ K[b](x|y)− z, for all x ∈ X.. This means that Pg(xg|y) ≈ 2−z

for all y ∈ X. By the fact that t′(X) = 0, for more than half x′ ∈ X ′ ⊆ X, Pg(·|x′) is a semimea-
sure, and thus K(xg|x′) / − logPg(xg|x′). For x′ ∈ X ′, the bound of theorem is achieved. For
y′ ∈ X \ X ′, there exists ≈ 2k programs from y′ to y ∈ X ′, and then there is a short program
from y to xg using Pg. Thus the algorithmic probability of m(xg|y′) is large and the bounds for
y′ ∈ X \ X ′ is achieved. The remainder of the proof uses Lemma 1 to replace stochasticity with
mutual information with the halting sequence and Lemma 4 to remove the total string b.

Proof.

(1.) The first step of the proof is to find a total string b such that X is a bunch with computable
complexity K[b], with maxx,x′∈X K[b](x|x′) <+ l. This enables the proof to move forward with com-
putable complexity and probability. The total string b is factored out at the end of the proof. In this
section, the probability measure Q that realizes the stochasticity of X is defined.

Let z = l − k and let b be the shortest total string where maxx,x′∈X K[b](x|x′) < l + 2, which we
call satisfying property A. Thus K(b|X) <+ K(〈z, ‖b‖〉) and b− is not total, using arguments in
the first paragraph of the proof of Theorem 19. Let s = 〈b, z〉. Let v ∈ {0, 1}∗ and elementary
probability measure Q minimize Ks(X|s), where Us(v) = Q. Recall that elementary measures are
introduced in Chapter 2. Let d = max{d(X|Q, 〈v, s〉), 1}. Let S =

⋃{Y : 〈Y 〉 ∈ Supp(Q)} be the
union of all sets encoded in the support of Q. Since Q is elementary, |S| < ∞. Let G be the set
of all functions g : S → N. Since S is finite, each g ∈ G can be encoded with an explicit finite string.

(2). We define a probability measure κ over functions g ∈ G from the union of the support of Q to
natural numbers, where functions with low values will have a higher probability.

Let κ : G → R≥0 be a probability measure over G, where κ(g) =
∏
a∈S 2−g(a). So for all a ∈ S,

κ({g : g(a) ≥ n}) = 2−n+1. Let c ∈ N be a constant solely dependent on U to be determined later.

(3.) The proof only works with X having a minimum number of elements. Otherwise the theorem
is trivially solved. This is a boundary case that can be skipped on first reading.

We assume that |X| > 16(c + d). Otherwise, k <+ log d, and then minx∈X maxx′∈X K(x|x′, s) ≤
l <+ z + log d <+ 2z + Ks(X|s). From this point, the reasoning starting at Equation 9.14 can be
used to prove the theorem.

(4.) We define the first of two tests, tg, parameterized by a function g ∈ G. We will show later in
the proof there is a g such that tg is a Q test. tg gives a high score to sets Y such that all their
elements a ∈ Y have low g score.

We define the following function t over Supp(Q), parameterized by g ∈ G. Let B be the set
of sets G such that for all x, x′ ∈ G, K[b](x|x′) < #G + z + 2. Let tg(Y ) = e2(d+c)−1 if
Y ∩ {a : g(a) ≥ blog(|Y |/(c+ d))c} = ∅ and Y ∈ B, otherwise tg(Y ) = 0.
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(5.) Using probabilistic arguments, it is shown that the expectation of tg over Q and κ is small.
This is required for probabilistic arguments to show the existence of a g ∈ G with tg being a Q-test.

So, using the fact that (1−m)em ≤ 1,

Eg∼κEY∼Q[tg(Y )]

=
∑
Y ∈B

Q(Y )κ({g : ∀a∈Y , g(a) < blog(|Y |/(c+ d))c})e2(d+c)−1

=
∑
Y ∈B

Q(Y )
∏
a∈Y

κ({g : g(a) < blog(|Y |/(c+ d))c})e2(d+c)−1

=
∑
Y ∈B

Q(Y )
∏
a∈Y

(
1− 2−blog(|Y |/(c+d))c+1

)
e2(d+c)−1

≤
∑
Y ∈B

Q(Y )(1− 2(c+ d)/|Y |)|Y |e2(d+c)−1

≤
∑
Y ∈B

Q(Y )e−2(c+d)e2(c+d)−1 < 0.5.

(6.) The measure Pg is defined, parameterized by g ∈ G gives Pg(x|y) a score of ≈ 2−z if
g(x) ' K[b](x|y) − z and 0 otherwise. The constants and max function ensure proper bound-
ary conditions and can be discounted on a first reading. By definition, the expection of Pg(S|y),
over g distributed by κ is small.

For each x, y ∈ S, g ∈ G, we define the following function

Pg(x|y) = [g(x) ≥ max{K[b](x|y)− z − dlog(c+ d)e − 3, 1}]2−z−2(d+c).

Thus Pg(x|y) is only one of two values, either 0 or 2−z−2(d+c). Pg(S|y) =
∑

x∈S Pg(x|y). So for all
y ∈ S, we have

Eg∼κ[Pg(S|y)]

= 2−z−2(d+c)
∑
x∈S

κ({g : g(x) ≥ max{K[b](x|y)− z − dlog(d+ c)e − 3, 1})

= 2−z−2(d+c)
∑
x∈S

2−max{K[b](x|y)−z−dlog(d+c)e−3,1}+1

≤ 2−z−2(d+c)
∑
x∈S

m[b](x|y)2z+dlog(d+c)e+4

≤ 2−(d+c)+4.

(7.) We define an indicator function Ig(y) which is 0 iff Pg(·|y) is a semi-measure, and Ig(Y )
counts the number of non semi-measures using y ∈ Y . Using bounds of the previous section, an
upper bound on the expectaction of Ig is given.

For all functions g ∈ G, we define the following indicator function, with Ig(y) = [Pg(S|y) > 1].
Furthermore, we extend the domain I to be over sets Y ∈ Supp(Q), with Ig(Y ) =

∑
y∈Y Ig(y).

Thus Ig(y) = 0 iff Pg(·|y) is a semimeasure where each x ∈ Supp(Pg(·|y)) can be identified by code
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of size =+ − logPg(x|y). For each such y ∈ S, the expectation of I with respect to κ is small, and
for Y ∈ Supp(Q), we have

Eg∼κ[Ig(y)] ≤ Eg∼κ[Pg(S|y)] ≤ 2−(c+d)+4

Eg∼κ[Ig(Y )] ≤ |Y |2−(c+d)+4.

(8.) We define the second test function t′, parameterized by g ∈ G. It gives a set a zero score
if Pg is a semi-measure for at least half its elements. Otherwise it gives the set a high score.
Through probabilistic arguments t′g has low Q expectation when g is distributed by κ. Note that

since Eg∼κ[Ig(Y )] ≤ |Y |2−(c+d)+4, by the Markov inequality κ(g : Ig(Y ) ≥ 0.5|Y |) ≤ 2−(c+d)+5.

We define the function t′ : Supp(Q)→ R≥0, parameterized by g ∈ G, which will give a set Y a zero
score iff Pg(·|y) is a semi-measure for at least half of the elements y ∈ Y . Otherwise t′g gives Y a

high score. More formally, let t′g(Y ) = 0 if Ig(Y ) < .5|Y | and t′g(Y ) = 2(d+c)−7, otherwise. Thus
we have that, due to the Markov inequality,

Eg∼κEY∼Q[t′g(Y )] =
∑
Y

Q(Y )Eg∼κ[[g : Ig(Y ) ≥ 0.5|Y |]]2c+d−7

=
∑
Y

Q(Y )κ({g : Ig(Y ) ≥ 0.5|Y |})2c+d−7

≤
∑
Y

Q(Y )2−(c+d)+52c+d−7

= 0.25.

(9.) Since the κ-expectation of tg and t′g are small, by probabilistic arguments, there is a g ∈ G
where tg and t′g are both Q-tests. Using similar arguments to that in the proof of Theorem 19, it is
proven that tg(X) = t′g(X) = 0.

By probabilistic arguments, there exists g ∈ G, such that EY∼Q[tg(Y )] ≤ 1 and EY∼Q[t′g(Y )] ≤ 1.
So both tg(·)Q(·) and t′g(·)Q(·) are semi-measures. Furthermore, K(g|c, d, v, s) = O(1). It must be
that tg(X) = 0. Otherwise, for proper choice of c solely dependent on U ,

d = d(X|Q, v, s)
= d− logQ(X)e −K(X|v, s)
> − logQ(X)− (− log tg(X)Q(X) + K(tg(·)Q(·)|v, s))−O(1)

> − logQ(X)− (− log tg(X)Q(X) + K(g,Q|v, s))−O(1)

> 2(c+ d)(log e)−K(c, d)−O(1)

> d,

causing a contradiction. Thus c is chosen to be large enough to have the property c > K(c) +O(1),
where the additive constant is depedent solely on the universal Turing machine. The same reason-
ing can be used to show that t′g(X) = 0. We roll c into the additive constants of the theorem and
remove it from consideration for the rest of the proof.

(10.) Since tg(X) = 0, there exists a ∈ X where g(a) has a high score, with g(a) ' K[b](a|y)− z,
for all y ∈ X. The inequality follows from k ≥ k+ K[b](a|y)− l = K[b](a|y)− z. This ensures that
Pg(a|y) ≈ 2−z for all y ∈ X.
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Therefore, since tg(X) = 0, there exists a ∈ X where for all y ∈ X, using the fact that |Y | >
16(c+ d),

g(a) ≥ blog(|Y |/(d+ c)c
≥ blog |Y |c − dlog(d+ c)e
≥ k − 1− dlog(d+ c)e
≥ max{K[b](a|y)− z − dlog(d+ c)e − 3, 1}.

This ensures that Pg(a|y) > 0 for all y ∈ X, due to the definition of Pg.

(11.) Since t′g(X) = 0, Pg(·|y) is a semimeasure for more than half X ′ of y ∈ X. Thus Pg(a|y)
can be used to identify a given y in this subset X ′ and the desired bound on K(a|y) is achieved.
Otherwise for y′ 6∈ X ′, a program can be created that computes some y ∈ X ′ from y′ (bounded by
l) and then use the bound proved of K(a|y). Since there is a lot of y ∈ X ′, there is a lot of such
programs, meaning the algorithmic probability of m(a|y′) is large, and thus the bound is achieved.

Furthermore, since t′g(X) = 0, there is a subset X ′ ⊆ X, |X ′| > 2k−2, where for all y ∈ X ′, Pg(·|y) is
a semimeasure. For such y, K(a|y, s) <+ − logPg(a|y)+K(g|d, v, s)+K(d, v|s) <+ z+3d+‖v‖ <+

z + Ks(X|s). Therefore for all y′ ∈ X \X ′,

K(a|y′, s) <+ − log
∑
y∈X′

2−K(a|y,s)−K(y|y′,s)

<+ − log
∑
y∈X′

2−l−z−Ks(X|s)

<+ 2z + Ks(X|s).

(12.) The following theorem removes the stochasticity term and the total string b, similarly to the
proof of Theorem 19.

So for all x ∈ X,

K(a|x, s) <+ 2z + Ks(X|s) (9.14)

K(a|x) <+ 2z + K(s) + Ks(X|s)
< 2z + K(b) + Ks(X|s) +O(log z)

< 2z + K(b) + I(X : H|s) +O(log z + log I(X : H|s)) (9.15)

< 2z + K(b) + I(X : H|b) +O(log z + log(I(X : H|b) + K(b)))

<log 2z + I(X : H) + K(b|X) (9.16)

<log 2z + I(X : H) + K(〈‖b‖, z〉)
<log 2z + I(X : H). (9.17)

Equation 9.15 is due to the application of Lemma 1. Equation 9.16 is due to the application of
Lemma 4. Equation 9.17 uses the same logic as Equation 9.13 in the proof of Theorem 19. �
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Chapter 10

Extending Chaitin’s Incompleteness
Theorem

10.1 Introduction

Gödel’s famous incompleteness theorem states that any theory F that is consistent, recursively
axiomatizable, and “sufficiently rich” (contains Robinson-arithmetic Q, or Q can be interpreted in
it) is incomplete, in that there exists true statements that cannot be proven in it.

It is well known that there is no recursive method to determine a non constant lower bound on
Kolmogorov complexity, K. Chaitin’s incompleteness theorem proves there exist no logical means
to prove lower bounds on K. Let F be as above, and significantly strong to make assertions about
the Kolmogorov complexity of strings. Furthermore, let F be sound. Then we get the celebrated
theorem.

Theorem. (Chaitin’s Incompleteness Theorem) For theory F , there is a constant c such that
F does not prove c < K(x) for any x.

The proof is straightforward. Assume otherwise. Take any c and enumerate proofs of F until
it proves the statement c < K(x) for some x. Then return x. This implies that K(x) < O(log c),
causing a contradiction for large enough c.

However this theorem doesn’t prohibit the existence of formal systems that prove c < K(x) for
a finite but very large number of strings. Or for our purposes, the above theorem doesn’t prohibit
theories which prove K(x) = c for a large (but finite) number of strings. Such theories are not to
be expected to be accessible by logicians. In this chapter, we prove such systems are exotic, and
cannot exist in the physical world. To do so we use two steps. The first step proves the following
theorem, which states K is uniformly uncomputable.

Theorem. A relation X ⊂ N× N of 2n unique pairs (b,K(b)) has n <log I(X;H).

The term H is the halting sequence. The information term is I(x;H) = K(x) −K(x|H). The
second part involves invoking the Indepedence Postulate (IP), introduced in [Lev84, Lev13]. IP is
an unprovable statement that physical sequences are independent from mathematical ones. Among
other applications, IP can be interpreted as a finitary Church-Turing thesis. The statement is as
follows.

IP: Let α be a sequence defined with an n-bit mathematical statement (e.g., in Peano
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Arithmetic), and a sequence β can be located in the physical world with a k-bit instruc-
tion set (e.g., ip-address). Then I(α : β) < k + n+ c, for some small absolute constant
c.

We rework IP so that x = α ∈ {0, 1}∗, β is equal to the halting sequence H, and the information
term is equal to I(x;H) = K(x)−K(x|H). Since H can be described by an O(1) bit mathematical
sequence, we get

I(x;H) <+ Address(x).

Let F be a formal system defined in Chaitin’s Incompleteness Theorem. Assume that F can
be used to prove K(xi) = ci for 2n unique strings xi. Then by Theorem 22, Lemma 2, and IP,

n <log I({(xi, ci)};H) <log I(F ;H) <log Address(F).

Thus as the number strings with proved Kolmogorov complexities grows, the formal system F
becomes exotic and by IP, inaccessible in the physical world. For related work, in [Lev13], it was
shown that consistent completions of PA have infinite mutual information with H and thus have
infinite addresses. This paper extends this result by proving the existence of theories with finite
mutual information with the halting sequence. Note that Theorem 22 can be generalized to binary
relations that approximate Kolmogorov complexity.

10.2 Results

Let Ω =
∑{2−‖p‖ : U(p) halts} be Chaitin’s Omega, Ωn ∈ Q≥0 be be the rational formed from the

first n bits of Ω, and Ωt =
∑{2−‖p‖ : U(p) halts in time t}. For n ∈ N, let bb(n) = min{t : Ωn <

Ωt}. bb−1(m) = arg minn{bb(n− 1) < m ≤ bb(n)}. Let Ω[n] ∈ {0, 1}∗ be the first n bits of Ω.

Lemma 7 For n = bb−1(m), K(Ω[n]|m,n) = O(1).

Proof. For a string x, let BB(x) = inf{t : Ωt > 0.x}. Enumerate strings of length n, starting
with 0n, and return the first string x such that BB(x) ≥ m. This string x is equal to Ω[n], otherwise
let y be the largest common prefix of x and Ω[n]. Thus BB(y) = bb(‖y‖) ≥ BB(x) ≥ m, which
means bb−1(m) ≤ ‖y‖ < n, causing a contradiction. �

Theorem 21 A relation X ⊂ N× N of 2n unique pairs (b,K(b)) has n <log I(X;H).

Proof. We relativize the universal Turing machine to n. Let X = {xi, ci}2ni=1, and T = min{t :
Kt(xi) = ci = K(xi), for i = 1, . . . , n}. Let N = bb−1(T ) and B = bb(N). We relativize the
universal Turing machine to B. Later on, we will make this relativization explicit. We also assume
that ci > n. If this is not the case, then one can construct X ′ ⊂ X of size 2n−1 with ci > n− 1 and
use X ′ instead.

Let m(x) = 2−KB(x). Let Q be an elementary probability measure that realizes Ks(X) and
d = max{d(X|Q), 1}. Without loss of generality, the support of Q is restricted to finite binary
relations B ⊂ N × N of size 2n. Let B1 =

⋃{y : (y, c) ∈ B}. Let S =
⋃{B1 : B ∈ Support(Q)}.

We randomly select each string in S to be in a set R independently with probability d2−n. Thus
E[m(R)] ≤ d2−n. For B ∈ Support(Q),

EREB∼Q[[R ∩B1 = ∅]]
=EB∼Q Pr(R ∩B1 = ∅)
=(1− d2−n)2n < e−d.
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Thus there exists a set R ⊆ S such that m(R) ≤ 2·2−n and EB∼Q[[R ∩ B1 = ∅]] < 2e−d. Let
t(B) = .5[R ∩B1 = ∅]2d. t is a Q-test, with EB∼Q[t(B)] ≤ 1. It must be that t(X) 6= 0, otherwise,

1.44d− 1 < log t(X) <+ d(X|Q) + K(t|Q) <+ d+ K(d),

which is a contradiction for large enough d, which one can assume without loss of generality. Thus
t(X) 6= 0 and R ∩X1 6= ∅. Furthermore, if y ∈ R, K(y) <+ − logm(x)− n+ log d+ K(m,R). So
for x ∈ R ∩X1, making the relativization of B explicit. By Lemma 1,

K(x|B) <+ − logm(x)− n+ log d+ K(m,R|B)

K(x)−K(B) <+ K(x)− n+ log d+ K(S|B)

n <+ K(B) + log d+ K(d,Q|B)

n <+ K(B) + Ks(X|B)

n <log K(B) + I(X;H|B)

n <log K(B) + K(X|B)−K(X|H) +O(logN) (10.1)

Equation 10.1 is due to the fact that B is computable from Ω[N ], thus it is computable from H
and N . So we have,

K(X|B) + K(B)

<+K(X|B,K(B)) + K(K(B)|B) + K(B)

<+K(X,B) + K(K(B)|B) (10.2)

<+K(X,N,B) +O(logN) (10.3)

<+K(X,N) +O(logN). (10.4)

<+K(X) +O(logN).

n <logK(X)−K(X|H) +O(logN). (10.5)

Equation 10.2 is from the chain rule. Equation 10.3 is from the fact thatM = bb(N). Equation 10.4
comes from K(T |X) = O(1) and Lemma 7, which implies K(B|N,T ) <+ K(Ω[N ]|N,T ) <+ O(1).

From X, one can compute T , where bb−1(T ) = N . Therefore by Lemma 8, K(Ω[N ]|X) <+

K(N), so by Lemma 2,

N <log I(Ω[N ];H) <log I(X;H) + K(N) <log I(X;H). (10.6)

The above equation used the common fact that the first n bits of Ω had n−O(log n) bits of mutual
information with H. So combining Equations 10.5 and 10.6, we get

n <log I(X;H).

�
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Chapter 11

A Small Theorem for Small m

11.1 Introduction

In this chapter, we show that semi measures that majorize the algorithmic probability have infinite
mutual information with the halting sequence.

For a probability p over {0, 1}∗, [p] ⊂ {0, 1}∞ is the set of infinite sequences β ∈ [p] such that
Ux(β) outputs the bit representation of p(x). The algorithm U is a standard universal Turing
machine. I(x : y) = K(x) + K(y) −K(x, y) is the mutual information between two strings. For
infinite sequences α, β ∈ {0, 1}∞, I(α : β) = log

∑
x,y∈{0,1}∗ m(x|α)m(y|β)2I(x:y) [Lev74].

Theorem. If w is a semimeasure on {0, 1}∗ and m < O(1)w then I(w : H) =∞.

11.2 Kolmogorov Complexity is Exotic

We cover material on busy beaver functions. Let Ω =
∑{2−‖p‖ : U(p) halts} be Chaitin’s

Omega, Ωn ∈ Q≥0 be be the rational formed from the first n bits of Ω, and Ωt =
∑{2−‖p‖ :

U(p) halts in time t}. For n ∈ N, let bb(n) = min{t : Ωn < Ωt}. bb−1(m) = arg minn{bb(n−1) <
m ≤ bb(n)}. Let Ω[n] ∈ {0, 1}∗ be the first n bits of Ω. For t ∈ N define the function
mt(x) =

∑{2−‖p‖ : U(p) = x in t steps} and for n ∈ N, we have mn(x) =
∑{2−‖p‖ : U(p) =

x in bb(n) steps}.

Lemma 8 For n = bb−1(m), K(Ω[n]|m,n) = O(1).

Proof. For a string x, let BB(x) = inf{t : Ωt > 0.x}. Enumerate strings of length n, starting
with 0n, and return the first string x such that BB(x) ≥ m. This string x is equal to Ω[n], otherwise
let y be the largest common prefix of x and Ω[n]. Thus BB(y) = bb(‖y‖) ≥ BB(x) ≥ m, which
means bb−1(m) ≤ ‖y‖ < n, causing a contradiction. �

Lemma 9 A relation X = {(xi, ci)}2ni=1 ⊂ {0, 1}∗ × N, |K(xi)− ci| ≤ s, has n <log 2s+ 2I(X;H).

Proof. We relativize the universal Turing machine to (n, s), which can be done due to the precision
of the theorem. Let T = min{t : d− log mt(xi)e − ci < s+ 1}. Let N = bb−1(T ) and M = bb(N).
So for all xi, − log mM (xi)−K(xi) <

+ 2s. Let Q be an elementary probability measure that realizes
Ks(X) and d = max{d(X|Q), 1}. Without loss of generality, the support of Q is restricted to binary
relations B ⊂ {0, 1}∗×N of size 2n. Let B1 =

⋃{y : (y, c) ∈ B}. Let S =
⋃{B1 : B ∈ Support(Q)}.
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We randomly select each string in S to be in a set R independently with probability d2−n. Thus
E[mM (R)] ≤ d2−n. For B ∈ Support(Q),

EREB∼Q[[R ∩B1 = ∅]] = EB∼Q Pr(R ∩B1 = ∅) = (1− d2−n)2n < e−d.

Thus there exists a set R ⊆ S such that mM (R) ≤ 2·2−n and EB∼Q[[R ∩ B1 = ∅]] < 2e−d. Let
t(B) = .5[R ∩B1 = ∅]2d. t is a Q-test, with EB∼Q[t(B)] ≤ 1. It must be that t(X) 6= 0, otherwise,

1.44d− 1 < log t(X) <+ d(X|Q) + K(t|Q) <+ d+ K(d),

which is a contradiction for large enough d, which one can assume without loss of generality. Thus
t(X) 6= 0 and R ∩X1 6= ∅. Furthermore, if y ∈ R, K(y) <+ − log mM (x)− n+ log d+ K(d,M,R).
So for x ∈ R ∩X1, .

K(x) <+ − log mM (x)− n+ log d+ K(d,M,R)

K(x) <+ K(x) + 2s− n+ log d+ K(M) + K(R, d)

n <+ 2s+ K(M) + log d+ K(Q, d)

n <+ 2s+ K(Ω[N ]) + Ks(X)

n <+ 2s+ K(Ω[N ]) + I(X;H) (11.1)

From Lemma 8, K(Ω[N ]|T,N) =+ K(Ω[N ]|X,N) = O(1). Furthermore it is well known for the
bits of Chaitin’s Omega, N <+ K(Ω[N ]) and K(Ω[N ]|H) <+ K(N). So, using Lemma 2,

N <+ K(Ω[N ]) <log I(Ω[N ];H) <log I(X;H) + K(N) <log K(X;H). (11.2)

So combining Equations 11.1 and 11.2, one gets

n <log 2s+ 2I(X;H).

�

11.3 Results

Theorem 22 If w is a semimeasure on {0, 1}∗ and m
∗
< w then I(w : H) =∞.

Proof. Note that w has full support since m does. One can also assume that for each x ∈ {0, 1}∗,
− log w(x) ∈ N. Let N ⊆ N be a set of numbers n such that w({0, 1}n) < 1/n. Obviously |N | =∞.

Fix n ∈ N . We have Xn = {x : w(x) < 2−n−logn+O(1)}. Some simple math shows that |Xn|
∗
> 2n.

So for each x ∈ Xn, K(x) >+ − log w(x) >+ n + log n. We also have that for each x ∈ {0, 1}n,
K(x) <+ n+K(n). Let Yn = {(x, n+log n) : x ∈ Xn}. So for each (x, c) ∈ Yn, |K(x)−c| <+ log n.
So applying Lemma 9 to Yn, we get n <log I(Yn;H) <log I(w : H) + K(n) <log I(w : H). Since
|N | =∞, I(w : H) =∞. �
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