All Sampling Methods Produce Outliers

Samuel Epstein*

February 21, 2024

Abstract

This paper contains a simple proof of the sampling theorem in [Eps21] with exponentially improved bounds. A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings. In the limit, greater outliers are guaranteed to exist in the output of A.

1 Discrete Sampling Theorem

A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings. Let $P = P_1, P_2, \ldots$ be a sequence of measures over strings. For example, one may choose $P_1 = P_2 \ldots$ or choose P_n to be the uniform measure over n-bit strings. A conditional probability bounded P-test is a function $t : \{0,1\}^* \times \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that for all $n \in \mathbb{N}$ and positive real number r, we have $P_n(\{x : t(x|n) \ge r\}) \le 1/r$. If P_1, P_2, \ldots is uniformly computable, then there exists a lower-semicomputable such P-test t that is "maximal" (i.e., for which $t' \le O(t)$ for every other such test t'). We fix such a t, and let $\overline{\mathbf{d}}_n(x|P) = \log t(x|n)$.

Lemma 1 Let P be a computable measure on strings and let A be a sampling method. For all integers M and N, there exists a finite set $S \subset \{0,1\}^*$ such that $P(S) \leq 2M/N$, and with probability strictly more than $1 - 2e^{-M}$: A(N) intersects S.

Proof. We show that some possibly infinite set S satisfies the conditions, and thus, some finite subset also satisfies the conditions due to the strict inequality. We use the probabilistic method: we select each string to be in S with probability M/N and show that 2 conditions are satisfied with positive probability. The expected value of P(S) is M/N. By the Markov inequality, the probability that P(S) > 2M/N is at most 1/2. For any set D containing N strings, the probability that S is disjoint from D is

$$(1 - M/N)^N < e^{-M}.$$

Let Q be the measure over N-element sets of strings generated by the sampling algorithm A(N). The left-hand side above is equal to the expected value of

 $Q(\{D: D \text{ is disjoint from } S\}).$

Again by the Markov inequality, with probability greater than 1/2, this measure is less than $2e^{-M}$. By the union bound, the probability that at least one of the conditions is violated is less than 1/2 + 1/2. Thus, with positive probability a required set is generated, and thus such a set exists.

^{*}JP Theory Group. samepst@jptheorygroup.org

Theorem 1 Let $P = P_1, P_2...$ be a uniformly computable sequence of measures on strings and let A be a sampling method. There exists $c \in \mathbb{N}$ such that for all n and k:

$$\Pr\left(\max_{a \in A(2^n)} \overline{\mathbf{d}}_n(a|P) > n-k-c\right) \ge 1 - 2e^{-2^k}.$$

Proof. We now fix a search procedure that on input N and M finds a set $S_{N,M}$ that satisfies the conditions of Lemma 1. Let t'(a|n) be the maximal value of $2^n/2^{k+2}$ such that $a \in S_{2^n,2^k}$ for some integer k. By construction, t' is a computable probability bound test, because $P(\{x : t'(x|n) = 2^\ell\}) \leq 2^{-\ell-1}$, and thus $P(t'(x|n) \geq 2^\ell) \leq 2^{-\ell-1} + 2^{-\ell-2} + \ldots$ With the given probability, the set $A(2^n)$ intersects $S_{2^n,2^k}$. For any number a in the intersection, we have $t'(x|n) \geq 2^{n-k-2}$, thus by the optimality of t and definition of $\overline{\mathbf{d}}$, we have $\overline{\mathbf{d}}_n(a|P) > n - k - O(1)$.

An incomplete sampling method A takes in a natural number N and outputs, with probability f(N), a set of N numbers. Otherwise A outputs \perp . f is computable.

Corollary 1 Let $P = P_1, P_2...$ be a uniformly computable sequence of measures on strings and let A be an incomplete sampling method. There exists $c \in \mathbb{N}$ such that for all n and k:

$$\Pr_{D=A(n)}\left(D\neq\perp and \max_{a\in D}\overline{\mathbf{d}}_n(a|P)\leq n-k-c\right)<2e^{-2^k}.$$

2 Continuous Sampling Method

Let $\mu = \mu_1, \mu_2, \ldots$ be a uniformly computable sequence of measures over infinite sequences. Similar way as for strings in the introduction, the randomness deficiency $\overline{\mathbf{D}}_n(\omega|\mu)$ for sequences ω is defined using lower-semicomputable functions $\{0,1\}^{\infty} \times \mathbb{N} \to \mathbb{R}_{\geq 0}$. A continuous sampling method C is a probabilistic function that maps, with probability 1, an integer N to an infinite encoding of Ndifferent sequences.

Theorem 2 There exists $c \in \mathbb{N}$ where for all n:

$$\Pr\left(\max_{\alpha \in C(2^n)} \overline{\mathbf{D}}_n(\alpha|\mu) > n - k - c\right) \ge 1 - 2.5e^{-2^k}.$$

Proof. For $D \subseteq \{0,1\}^{\infty}$, $D_m = \{\omega[0..m] : \omega \in D\}$. Let $g(n) = \arg\min_m \Pr_{D=C(n)}(|D_m| < n) < 0.5e^{-2^n}$ be the smallest number m such that the initial m-segment of C(n) are sets of n strings with very high probability. g is computable, because C outputs a set of distinct infinite sequences with probability 1. For probability ψ over $\{0,1\}^{\infty}$, let $\psi^m(x) = [|x| = m]\psi(\{\omega : x \sqsubset \omega\})$. Let $\mu^g = \mu_1^{g(1)}, \mu_2^{g(2)}, \ldots$ be a uniformly computable sequence of discrete probability measures and let A be a discrete incomplete sampling method, where for random seed $\omega \in \{0,1\}^{\infty}, A(n,\omega) = C(n,\omega)_{g(n)}$

if $|C(n,\omega)_{g(n)}| = n$; otherwise $A(n,\omega) = \bot$. So $\Pr[A(n) = \bot] < 0.5e^{-2^n}$.

$$\Pr\left(\max_{\alpha \in C(2^{n})} \overline{\mathbf{D}}_{n}(\alpha | \mu) \leq n - k - O(1)\right)$$

$$\leq \Pr_{Z=C(2^{n})} \left(\left(|Z_{g(n)}| < 2^{n}\right) \text{ or } \left(|Z_{g(n)}| = 2^{n} \text{ and } \max_{\alpha \in Z} \overline{\mathbf{D}}_{n}(\alpha | \mu) \leq n - k - O(1)\right)\right)$$

$$\leq \Pr_{D=A(2^{n})} \left(D = \bot \text{ or } \left(D \neq \bot \text{ and } \max_{x \in D} \overline{\mathbf{d}}_{n}(x | \mu^{g}) \leq n - k - O(1)\right) \right)$$

$$< 0.5e^{-2^{n}} + 2e^{-2^{k}}$$

$$\leq 2.5e^{-2^{k}},$$
(1)

where Equation 1 is due to Corollary 1.

3 Output of Randomized Algorithms

In this section, we prove that the non-automatic output of randomized algorithms are guaranteed to have high $\overline{\mathbf{D}}$ scores, i.e. be outliers. Let $\lambda = \lambda_1, \lambda_2, \ldots$ and $\mu = \mu_1, \mu_2, \ldots$ be uniformly computable sequences of measures over infinite sequences. Each λ_n is non-atomic.

Theorem 3 There is a constant $f \in \mathbb{N}$, dependent on μ and λ , where for all $n \in \mathbb{N}$, $\lambda_n \{ \alpha : \overline{\mathbf{D}}_n(\alpha | \mu) > n - f \} > 2^{-n-f}$.

Proof. We define the continuous sampling method C, where on input n, randomly samples n elements from λ_n . Let $d_n = \lambda_n \{ \alpha : \overline{\mathbf{D}}_n(\alpha | \mu) > n - b \}$, where b is the constant in Theorem 2. Evoking this theorem, with k = 0, and $f = \max\{b, c\}$,

$$\Pr\left(\max_{\alpha\in C(2^{n})}\overline{\mathbf{D}}_{n}(\alpha|\mu) > n-b\right) > 1-2.5e^{-1}$$

$$1-(1-d_{n})^{2^{n}} > 1-2.5e^{-1}$$

$$1-2^{n}d_{n} < 2.5/e$$

$$d_{n} > (1-2.5/e)2^{-n}$$

$$\lambda_{n}\{\alpha:\overline{\mathbf{D}}_{n}(\alpha|\mu) > n-b\} > 2^{-n-c}$$

$$\lambda_{n}\{\alpha:\overline{\mathbf{D}}_{n}(\alpha|\mu) > n-f\} > 2^{-n-f}.$$

References

[Eps21] Samuel Epstein. All sampling methods produce outliers. IEEE Transactions on Information Theory, 67(11):7568–7578, 2021.