All Sampling Methods Produce Outliers

Samuel Epstein*

February 21, 2024

Abstract

This paper contains a simple proof of the sampling theorem in [Eps21] with exponentially improved bounds. A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings. In the limit, greater outliers are guaranteed to exist in the output of A.

1 Discrete Sampling Theorem

A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings. Let $P=P_{1}, P_{2}, \ldots$ be a sequence of measures over strings. For example, one may choose $P_{1}=P_{2} \ldots$ or choose P_{n} to be the uniform measure over n-bit strings. A conditional probability bounded P-test is a function $t:\{0,1\}^{*} \times \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ such that for all $n \in \mathbb{N}$ and positive real number r, we have $P_{n}(\{x: t(x \mid n) \geq r\}) \leq 1 / r$. If P_{1}, P_{2}, \ldots is uniformly computable, then there exists a lower-semicomputable such P-test t that is "maximal" (i.e., for which $t^{\prime} \leq O(t)$ for every other such test $\left.t^{\prime}\right)$. We fix such a t, and let $\overline{\mathbf{d}}_{n}(x \mid P)=\log t(x \mid n)$.

Lemma 1 Let P be a computable measure on strings and let A be a sampling method. For all integers M and N, there exists a finite set $S \subset\{0,1\}^{*}$ such that $P(S) \leq 2 M / N$, and with probability strictly more than $1-2 e^{-M}: A(N)$ intersects S.

Proof. We show that some possibly infinite set S satisfies the conditions, and thus, some finite subset also satisfies the conditions due to the strict inequality. We use the probabilistic method: we select each string to be in S with probability M / N and show that 2 conditions are satisfied with positive probability. The expected value of $P(S)$ is M / N. By the Markov inequality, the probability that $P(S)>2 M / N$ is at most $1 / 2$. For any set D containing N strings, the probability that S is disjoint from D is

$$
(1-M / N)^{N}<e^{-M} .
$$

Let Q be the measure over N-element sets of strings generated by the sampling algorithm $A(N)$. The left-hand side above is equal to the expected value of

$$
Q(\{D: D \text { is disjoint from } S\}) .
$$

Again by the Markov inequality, with probability greater than $1 / 2$, this measure is less than $2 e^{-M}$. By the union bound, the probability that at least one of the conditions is violated is less than $1 / 2+1 / 2$. Thus, with positive probability a required set is generated, and thus such a set exists.

[^0]Theorem 1 Let $P=P_{1}, P_{2} \ldots$ be a uniformly computable sequence of measures on strings and let A be a sampling method. There exists $c \in \mathbb{N}$ such that for all n and k :

$$
\operatorname{Pr}\left(\max _{a \in A\left(2^{n}\right)} \overline{\mathbf{d}}_{n}(a \mid P)>n-k-c\right) \geq 1-2 e^{-2^{k}}
$$

Proof. We now fix a search procedure that on input N and M finds a set $S_{N, M}$ that satisfies the conditions of Lemma 1. Let $t^{\prime}(a \mid n)$ be the maximal value of $2^{n} / 2^{k+2}$ such that $a \in S_{2^{n}, 2^{k}}$ for some integer k. By construction, t^{\prime} is a computable probability bound test, because $P\left(\left\{x: t^{\prime}(x \mid n)=\right.\right.$ $\left.\left.2^{\ell}\right\}\right) \leq 2^{-\ell-1}$, and thus $P\left(t^{\prime}(x \mid n) \geq 2^{\ell}\right) \leq 2^{-\ell-1}+2^{-\ell-2}+\ldots$ With the given probability, the set $A\left(2^{n}\right)$ intersects $S_{2^{n}, 2^{k}}$. For any number a in the intersection, we have $t^{\prime}(x \mid n) \geq 2^{n-k-2}$, thus by the optimality of t and definition of $\overline{\mathbf{d}}$, we have $\overline{\mathbf{d}}_{n}(a \mid P)>n-k-O(1)$.

An incomplete sampling method A takes in a natural number N and outputs, with probability $f(N)$, a set of N numbers. Otherwise A outputs $\perp . f$ is computable.

Corollary 1 Let $P=P_{1}, P_{2} \ldots$ be a uniformly computable sequence of measures on strings and let A be an incomplete sampling method. There exists $c \in \mathbb{N}$ such that for all n and k :

$$
\operatorname{Pr}_{D=A(n)}\left(D \neq \perp \quad \text { and } \max _{a \in D} \overline{\mathbf{d}}_{n}(a \mid P) \leq n-k-c\right)<2 e^{-2^{k}}
$$

2 Continuous Sampling Method

Let $\mu=\mu_{1}, \mu_{2}, \ldots$ be a uniformly computable sequence of measures over infinite sequences. Similar way as for strings in the introduction, the randomness deficiency $\overline{\mathbf{D}}_{n}(\omega \mid \mu)$ for sequences ω is defined using lower-semicomputable functions $\{0,1\}^{\infty} \times \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$. A continuous sampling method C is a probabilistic function that maps, with probability 1 , an integer N to an infinite encoding of N different sequences.

Theorem 2 There exists $c \in \mathbb{N}$ where for all n :

$$
\operatorname{Pr}\left(\max _{\alpha \in C\left(2^{n}\right)} \overline{\mathbf{D}}_{n}(\alpha \mid \mu)>n-k-c\right) \geq 1-2.5 e^{-2^{k}}
$$

Proof. For $D \subseteq\{0,1\}^{\infty}, D_{m}=\{\omega[0 . . m]: \omega \in D\}$. Let $g(n)=\arg \min _{m} \operatorname{Pr}_{D=C(n)}\left(\left|D_{m}\right|<n\right)<$ $0.5 e^{-2^{n}}$ be the smallest number m such that the initial m-segment of $C(n)$ are sets of n strings with very high probability. g is computable, because C outputs a set of distinct infinite sequences with probability 1 . For probability ψ over $\{0,1\}^{\infty}$, let $\psi^{m}(x)=[|x|=m] \psi(\{\omega: x \sqsubset \omega\})$. Let $\mu^{g}=$ $\mu_{1}^{g(1)}, \mu_{2}^{g(2)}, \ldots$ be a uniformly computable sequence of discrete probability measures and let A be a discrete incomplete sampling method, where for random seed $\omega \in\{0,1\}^{\infty}, A(n, \omega)=C(n, \omega)_{g(n)}$
if $\left|C(n, \omega)_{g(n)}\right|=n$; otherwise $A(n, \omega)=\perp$. So $\operatorname{Pr}[A(n)=\perp]<0.5 e^{-2^{n}}$.

$$
\begin{align*}
& \operatorname{Pr}\left(\max _{\alpha \in C\left(2^{n}\right)} \overline{\mathbf{D}}_{n}(\alpha \mid \mu) \leq n-k-O(1)\right) \\
\leq & \operatorname{Pr}_{Z=C\left(2^{n}\right)}\left(\left(\left|Z_{g(n)}\right|<2^{n}\right) \text { or }\left(\left|Z_{g(n)}\right|=2^{n} \text { and } \max _{\alpha \in Z} \overline{\mathbf{D}}_{n}(\alpha \mid \mu) \leq n-k-O(1)\right)\right. \\
\leq & \operatorname{Pr}_{D=A\left(2^{n}\right)}\left(D=\perp \text { or }\left(D \neq \perp \text { and } \max _{x \in D} \overline{\mathbf{d}}_{n}\left(x \mid \mu^{g}\right) \leq n-k-O(1)\right)\right) \\
< & 0.5 e^{-2^{n}}+2 e^{-2^{k}} \tag{1}\\
\leq & 2.5 e^{-2^{k}},
\end{align*}
$$

where Equation 1 is due to Corollary 1.

3 Output of Randomized Algorithms

In this section, we prove that the non-automatic output of randomized algorithms are guaranteed to have high $\overline{\mathbf{D}}$ scores, i.e. be outliers. Let $\lambda=\lambda_{1}, \lambda_{2}, \ldots$ and $\mu=\mu_{1}, \mu_{2}, \ldots$ be uniformly computable sequences of measures over infinite sequences. Each λ_{n} is non-atomic.

Theorem 3 There is a constant $f \in \mathbb{N}$, dependent on μ and λ, where for all $n \in \mathbb{N}$, $\lambda_{n}\left\{\alpha: \overline{\mathbf{D}}_{n}(\alpha \mid \mu)>n-f\right\}>2^{-n-f}$.

Proof. We define the continuous sampling method C, where on input n, randomly samples n elements from λ_{n}. Let $d_{n}=\lambda_{n}\left\{\alpha: \overline{\mathbf{D}}_{n}(\alpha \mid \mu)>n-b\right\}$, where b is the constant in Theorem 2. Evoking this theorem, with $k=0$, and $f=\max \{b, c\}$,

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{\alpha \in C\left(2^{n}\right)} \overline{\mathbf{D}}_{n}(\alpha \mid \mu)>n-b\right) & >1-2.5 e^{-1} \\
1-\left(1-d_{n}\right)^{2^{n}} & >1-2.5 e^{-1} \\
1-2^{n} d_{n} & <2.5 / e \\
d_{n} & >(1-2.5 / e) 2^{-n} \\
\lambda_{n}\left\{\alpha: \overline{\mathbf{D}}_{n}(\alpha \mid \mu)>n-b\right\} & >2^{-n-c} \\
\lambda_{n}\left\{\alpha: \overline{\mathbf{D}}_{n}(\alpha \mid \mu)>n-f\right\} & >2^{-n-f} .
\end{aligned}
$$

References

[Eps21] Samuel Epstein. All sampling methods produce outliers. IEEE Transactions on Information Theory, 67(11):7568-7578, 2021.

[^0]: *JP Theory Group. samepst@jptheorygroup.org

