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Abstract

We extend the Semi-least Squares problem defined by Rao and Mitra (1971) to the

Kernel Semi-least Squares problem. We introduce “subset projection,” a technique that

produces a solution to this problem. We show how the results of such a subset projection

can be used to approximate a computationally expensive distance metric.

1 Introduction

We consider the problem of approximating a computationally expensive distance of

a real-time observation to a set of training data. Given is a set of n samples Q =



{q1, q2, . . . , qn}, from a sample space Q, with Q ⊂ Q, representing training data and

a new sample q, representing a real-time observation. Also given is the target dis-

tance metric d which takes Θ(e) time to compute. The goal is to approximate the

distance d(q, qi) of the real-time observation q to each qi ∈ Q in o(en) time.

Our posed problem of sparse distance approximation represents a variant in the gen-

eral literature of distance metric learning (Yang and Jin (2006)). The general problem of

distance metric learning is common in real-world applications such as computer vision

and content retrieval.

We present a general solution to the sparse distance approximation problem, rely-

ing only on the assumption that the target distance metric d is Hilbertian. We review

the Semi-least Squares problem, introduced by Rao and Mitra (1971), in Section 2.

We review kernel literature in Section 3. The contribution of this paper is to show the

connection between these two ideas. By extending the Semi-least Squares problem to

the Kernel Semi-least Squares problem, we provide a computationally advantageous

method to solving the important problem of distance approximation (Sections 5 and 6).

In Section 7, we provide a method for choosing the best training subset for distance ap-

proximation. We also provide an alternate derivation of the solution (Section 8). Related

works are discussed in Section 9. Experimental results of our method and a comparison

to the Nyström method (Williams and Seeger (2001)) are shown in Section 10.

2 The Semi-least Squares Problem

In this section, we describe the Semi-least Squares problem introduced by Rao and

Mitra (1971). In this problem, the traditional L2-norm ‖ · ‖, used by the well-known

Least Squares problem, is replaced by a seminorm. A seminorm, ρ(·), differs from a

norm in that it is permitted that ρ(u) = 0 for some non-zero vectors u.

A square matrix J is positive semidefinite if it allows a decomposition1 J = HH∗

1The * symbol represents the transpose operation.
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, for some matrix H . We define seminorm ‖z‖J = (z∗Jz)1/2, where J = HH∗ is a

positive semidefinite matrix. It is not a proper norm because for all vectors v in the null

space of H , ‖v‖J = 0. A matrix G is said to be a Semi-least Squares inverse of a matrix

A if the minimum of

‖Az − y‖J (1)

is attained at z = Gy, for any y. Such a G exists, being of the form

G = (A∗JA)−1A∗J + P. (2)

The matrix P is any projection onto the null space of H∗A. The precise form of P is

[I − (A∗JA)+(A∗JA)]U , for any matrix U . The (·)+ operation represents the Moore-

Penrose pseudoinverse.

Computation efficiency was not discussed in Rao and Mitra’s 1971 paper. However

computational benefits emerge when the Semi-least Squares problem is extended with

kernels, as shown in Section 6.

3 Kernels

We assume the distance function d is Hilbertian. A distance metric d is Hilbertian if

it can be embedded into a vector space, with finite or infinite number of dimensions.

We can use the inner product function (or kernel function) associated with this space to

perform useful functions, such as projections. We define such a kernel function k by

k(q, q′) = g(q)− 1

2
d2(q, q′) + g(q′), (3)

for any function g : Q → R+. One common form is g(q) = 1
2
d2(q, q′) for some

q′ ∈ Q. Since d is Hilbertian, k is semi-positive definite. This implies the kernel
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function k represents the inner product over Q, mapped to a Hilbert space F = Rl, with

l ∈ N∪{∞}. This mapping fromQ to F is represented by the function φ(q) : Q → F ,

with

k(q, q′) = φ∗(q)φ(q′). (4)

The kernel substitution method, known also as the kernel trick, allows the mapping φ

to be implicitly defined by kernel k (Schölkopf and Smola (2001)).

We introduce some standard definitions associated with kernels. The Gram matrix

K and the design matrix Φ are defined with respect to the set Q = {q1, q2, . . . , qn}, and

a mapping φ. The Gram matrix K contains all the inner products between mappings

of elements of Q. It is an n × n matrix, whose (i, j)th element is k(qi, qj). The Gram

matrix is an explicit construct. The design matrix Φ is a listing of the mapping of the

elements of Q using φ. The design matrix Φ is an l × n matrix whose ith column is

φ(qi).

The Gram matrix and the design matrix are related by Φ∗Φ = K. The empirical

map is denoted by kQ : Q → Rn, where the ith value of vector kQ(q) is k(qi, q), with

qi ∈ Q. It follows that Φ∗φ(q) = kQ(q). The Gram matrix K and empirical map kQ(·)

can be computed, whereas the design matrix Φ and the mapping φ(·) are not generally

computable.

4 Distance Decomposition

In this section we show how to compute the distance d(q, qi), with qi ∈ Q, using tangent

and orthogonal components with respect to the linear span of Q. This decomposition of

the distance d into orthogonal components is a convenient form to be used in Section 5

for sparse distance approximation. Let k be a kernel function whose induced distance is

d, with d2(q, q′) = k(q, q) + k(q′, q′)− 2k(q, q′). The kernel k defines a kernel feature
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space F whose distances are congruent with d, and an implicit mapping φ : Q → F .

The linear span of the set Q in F is defined by {
∑
αiφ(qi) | α ∈ Rn}.

Figure 1: The point x represents the projection of the observation φ(q) onto the linear

span of the set Q in kernel space F . The vector from q to q1 can be seen as the decom-

position into two orthogonal components, the vector from φ(q) to x and the vector of x

to φ(q1). The linear span intersects the origin of F .

Let x represent the results of a projection from the mapped observation φ(q) to the

span of Q in F , as seen in Figure 1. Since x is the result of an orthogonal projection,

the distance function d(q, qi) for each qi ∈ Q can be defined by orthogonal components,

with

d(q, q′)2 = ‖φ(q)− x‖2 + ‖x− φ(q′)‖2. (5)

In the rest of this section, we show how to compute the two terms of Equation 5.

Kernel Projection

The point x can be defined according to the L2 norm, with

x = arg min
x′∈Span(Q) in F

‖x′ − φ(q)‖. (6)
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In general, the point x cannot be explicitly computed, since F has potentially infinite

dimension. However point x can be represented as the linear combination of the obser-

vations of training set Q, mapped into Φ,

x =
n∑
i=1

βiφ(qi) = Φ β, (7)

where βi is the ith element of the vector β ∈ Rn that represents the coordinates of x

using φ(qi) as a basis. The projection used to produce point x can be formally defined

using the Least Squares methodology and the coordinates β. A mapping h(q) = β is

defined to be the Kernel Least Squares inverse of a training set Q if

h(q) = arg min
β

∑
q∈Q

‖Φβ − φ(q)‖.

Such a mapping exists and can be derived using Least Squares methodology, with

h(q) = β = Φ+φ(q) = (Φ∗Φ)−1 Φ∗φ(q) = K−1kQ(q), (8)

where the term Φ+ represents the pseudoinverse of the design matrix (A similar form

of Equation 8 was described by Schölkopf et al. (1999)). This mapping is known as

the kernel projection. The Gram matrix K might be singular, but the limit limδ→0(K +

δI)−1kQ(q) is guaranteed to exist by the definition of pseudoinverses.

Computation of Distance Decomposition

The coordinates β representing point x can be used to compute both distances of Equa-

tion 5. The term ‖φ(q) − x‖2 can be computed using the fact that the span of Q in F
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contains the origin, and x is a orthogonal projection, with

‖φ(q)− x‖2 = ‖φ(q)‖2 − ‖x‖2 = φ(q)∗φ(q)− β∗Φ∗Φβ

= k(q, q)− β∗Kβ. (9)

The term ‖x− φ(qi)‖2 can be computed by a direct substitution, with

‖x− φ(qi)‖2 = ‖Φ β − φ(qi)‖2

= β∗Kβ − 2β∗Ki +Ki,i. (10)

The term Ki represents the ith column of the Gram matrix K of Q. Equations 9

and 10 can be substituted back into the distance decomposition of Equation 5, resulting

in Equation 12. Given a kernel function k, a set Q with associated Gram matrix K, the

distance d(q, qi) can be computed by the following steps:

1. The coordinates β are computed with the kernel projection,

β = K−1kQ(q). (11)

2. The distance d(q, qi) is computed using the coordinates, β,

d(q, qi) = (k(q, q)− 2β∗Ki +Ki,i)
1/2 . (12)

5 Sparse Distance Approximation

Assuming a kernel of the form of Equation 3 is used, the time complexity of computing

the kernel, Ω(e), is not less than the time complexity of computing the distance d. To

compute the kernel projection of Equation 11, k(q, qi) needs to be computed for each

qi ∈ Q. The time complexity of this operation is on the order of Ω(en), where n is the
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size of the training set and assuming n < e. Therefore computing the decomposition of

the distance into orthogonal components in Section 4 does not provide any time com-

plexity benefits. However, the kernel projection of Equation 11 can be approximated,

which, as we show below, is computationally advantageous.

We introduce the technique of subset projection, which approximates the kernel

projection using a secondary set of observations R = {r1, r2, . . . , rm}, where |R| = m,

|Q| = n, and typically R ⊂ Q and m� n. It is of the form

β̂ = (K+
RQ +W )kR(q). (13)

The term KRQ is an m × n matrix whose value at position (i, j) is equal to k(ri, qj).

This matrix can be informally thought of as a “cross” Gram matrix between R and Q.

The m × n matrix W represents any projection onto the null space of KRQ. The term

kR represents the empirical function for R.

Whereas the kernel projection minimizes an L2 norm and provides a Kernel Least

Squares solution, the subset projection of Equation 13 minimizes a seminorm and pro-

vides a Kernel Semi-least Squares solution. The Kernel Semi-least Squares problem is

defined in Section 6.

Assuming the inverse cross Gram matrix is computed offline, the computational

complexity of the subset projection is Θ(em), where n = |Q| and m = |R|, and

assuming m < n < e. The subset projection is more efficient to compute than the

kernel projection. The results of the subset projection can be used to approximate the

distance of q to each qi ∈ Q.

Solution to Distance Approximation

Given is a kernel function k (derived from the distance d), a training set Q, and an

observation q. A subset R ⊆ Q is chosen, and the inverse cross matrix K+
RQ and the

projection W are pre-computed (the standard value of W is 0). The distance approxi-
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mation, d̂, is computed by two steps.

1. The approximate coordinates β̂ are computed by the subset projection, with

β̂ = (K+
RQ +W )kR(q). (14)

2. The distance d̂ is computed using the coordinates,

d̂(q, qi) =
(
k(q, q)− 2β̂∗Ki +Ki,i

)1/2
. (15)

The approximated coordinates β̂ can be reused for each qi ∈ Q. The time complex-

ity of the procedure is O(em), assuming m < n < e. This implies the time complexity

is o(en) and thus this procedure represents a solution to the sparse distance approxima-

tion problem described in the introduction.

6 The Kernel Semi-least Squares Problem

We extend the Semi-least Squares problem of Section 2 by introducing the Kernel Semi-

least Squares problem, for which the subset projection provides an optimal solution. Let

k be a kernel, with associated mapping φ. Let Q = {q1, q2, . . . , qn} be the training set

and R = {r1, r2, . . . , rm} be another set, where typically m � n and R ⊂ Q. Sets Q

andR have design matrices Φ and ΦR, whose ith column is φ(qi) and φ(ri) respectively.

We define the matrix J used in the seminorm ‖ · ‖J to be the scatter matrix of R,

J = ΦRΦ∗R. A mapping h is said to be the Kernel Semi-least Squares inverse of Q and

R if the minimum of

‖Φβ − φ(q)‖J (16)
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is achieved at

β̂ = h(q), (17)

for all q. From Equation 2, such a mapping h exists and is of the form

h(q) = Gφ(q) (18)

with

G = (Φ∗JΦ)−1Φ∗J + P

= (Φ∗ΦRΦ∗RΦ)−1Φ∗ΦRΦ∗R + P

= (K∗RQKRQ)−1K∗RQΦ∗R + P

= K+
RQΦ∗R + P. (19)

The term KRQ = Φ∗RΦ is the “cross” Gram matrix. The matrix P represents any

projection onto the null space of KRQ. By restricting the projection P to be of the form

WΦ∗R, with W being an m × n matrix that is a projection onto the null space of KRQ,

we can derive a computable mapping, with

β̂ = h(q)

β̂ = ((K+
RQ)Φ∗R +WΦ∗R)φ(q)

= ((K+
RQ +W )Φ∗R)φ(q)

= (K+
RQ +W )kR(q), (20)

where kR representing the empirical map with respect to R. The matrix W is of the

form
[
I −K+

RQKRQ

]
U , for any m × n matrix U . This is the same form as the subset

projection introduced in Equation 13. Thus the subset projection produces a solution
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to the Kernel Semi-least Squares problem. Assuming the matrices K+
RQ and W are

precomputed, the time complexity to compute β̂ is Θ(nm + em) = Θ(em), assuming

m < n < e.

7 Subset Selection

One important open issue is how to select the subset Ro for which the corresponding

approximate distance d̂R is closest to the original distance d. We formalize the selection

of the subset as a minimization problem, where Ro represents the optimal subset:

Ro = arg min
R∈R

∑
qi∈Q

d̂R(qi, qi)
2. (21)

The set of candidate subsets is given by R ⊆ 2Q. The measure of closeness is deter-

mined by the sum of the squared approximate distances d̂R of each training element

qi ∈ Q to itself. The optimally selected subset can be rewritten as

Ro = arg max
R∈R

n∑
i=1

(
β̂∗iKi

)
, (22)

with Ki being the ith column of the Gram matrix K of Q, and β̂i = K+
RQkR(qi). This

can be further simplified with

Ro = arg max
R∈R

,
n∑
i=1

(
K+
RQKRQK

)
ii
. (23)

The orthogonal projection on the range of K∗RQ is denoted by PRQ = K+
RQKRQ, so the

final expression to compute the optimally-selected subset Ro of candidatesR ⊆ 2Q is

Ro = arg max
R∈R

Tr (PRQK) . (24)
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This means that the optimal subset Ro ∈ R maximizes the sum of the eigenvalues

of the Gram matrix K of the training set Q, projected onto the range of K∗RoQ
. A

general way to recover Ro depends on the choice of the candidate subsets R. There

is future work in determining an efficient algorithm to recover Ro for different choices

of the candidates. One natural set of candidates is all subsets of a certain size m, with

R = {R : R ∈ 2Q, |R| = m}.

Minimizing the difference of distances

Another approach is to find the subset Ro ∈ R that minimizes the absolute difference

of the squared distances d̂ and d, sampled over the training set Q,

Ro = arg min
R∈R

∑
qi,qj∈Q

∣∣∣d̂R(qi, qj)
2 − d(qi, qj)

2
∣∣∣ . (25)

This formulation can be reduced further with

Ro = arg min
R∈R

n∑
i=1

n∑
j=1

∣∣∣(β̂i − βi)∗Kj

∣∣∣ , (26)

with Kj being the jth column of the Gram matrix K of Q, and β̂i = K+
RQkR(qi),

and βi = K−1kQ(qi). The expression can be further converted into a term similar to

Equation 24, with

Ro = arg min
R∈R

,

n∑
i=1

n∑
j=1

∣∣(I −K+
RQKRQ) ∗K

∣∣
ij
,

= arg min
R∈R
|‖NRQK‖1 . (27)

The orthogonal projection on the null space of KRQ is represented by NRQ. For this

formulation, the best subset Ro minimizes the entrywise 1-norm ‖A‖1 =
∑

i,j

∣∣aij∣∣ of

the Gram matrix K of the training set Q, projected onto the nullspace of the KRoQ.
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8 Alternate Derivation of the Subset Projection

The subset projection can also be derived as the concatenation of two sequential projec-

tions (Figure 2). However this derivation is more restrictive than that of Section 6, since

it produces only one form of the subset projection with the matrix W set to zero. The

first projection is from the position φ(q) to a point α in the linear span of R in feature

space F with

α = K−1R kR(q). (28)

Figure 2: The subset projection can be interpreted as two projections. The first projec-

tion is from φ(q) to α on the span of R. The second projection is from α to β̂ on the

span of Q.

The second projection is from point α to the position β̂ in span of Q in F . Thus the

second projection finds a position β̂ that minimizes the term ‖Φβ̂−ΦRα‖. The solution

to this term is of the form

β̂ =
(
K−1Q KQR

)
α. (29)

Equation 29 appears in the solution of the Reduced Subset Problem, described by

Schölkopf et al. (1999), which is to find a small set of examples Q and coefficients β to

represent a point α in span of a larger set R. However, we use Equation 29 to project
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onto a larger set. Whereas the Reduced Subset Problem assumes that |Q| � |R| and

Q ⊂ R, we assume |Q| � |R| and R ⊂ Q. Concatenating the two projections together

results in

β̂ = K−1Q KQRK
−1
R kR(q) = K+

RQkR(q). (30)

Equation 30 has the same form as the subset projection of Equation 13 with W = 0,

and thus can be computed in the same fashion.

If the approximate distance d̂ uses a subset where R ⊆ Q and a subset projection

with W = 0, then for any q ∈ Q and qi ∈ R, d̂(q, qi) = d(q, qi). Although the ap-

proximation d̂ of the distance is accurate, the value d̂(q, qi) can be quite large. Without

further assumptions, there are no general inequalities between distances d̂(q, qj) and

d̂(q, qi), with qi ∈ R, qj ∈ Q \R. Given the inequality d(q, qi) > d(q, qj) on actual dis-

tances, the inequality d̂(q, qi) > d̂(q, qj) on approximate distances would be desirable,

but there are examples where the inequality on approximate distances does not hold.

9 Related Works

Our sparse distance approximation problem is related to the out-of-sample extension to

the dimensionality reduction problem (Yang and Jin (2006); Bengio et al. (2003)). For

the dimensionality reduction problem, a data set X = {x1, . . . , xn} and a metric d(·, ·)

are given. The goal is to find a set of points Y = {y1, . . . , yn} ∈ Rm, such that each

yi “represents” its counterpart xi. This “representation” is defined by either local or

global constraints with regard to X and Y . The goal of the out-of-sample extension to

dimensionality reduction is to compute a new point y given a real-time point x, without

recomputing the mapping of X to Y .

The out-of-sample extension is compatible with algorithms that solve variants of the

dimensionality reduction problem such as Multi-Dimensional Scaling (Cox and Cox
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(2000)), Spectral Clustering (Weiss (1999)), Laplacian Eigenmaps (Betkin and Niyogi

(2003)), Isomaps (Tenenbaum et al. (2000)), and Locally Linear Embedding (Roweis

and Saul (2000)). These algorithms construct a (problem specific) kernel function

kD(·, ·) dependent on the sample data D and the distance function d(·, ·) (Bengio et

al. (2003)). With kD, a Gram matrix K of the sample data D is computed. Given an

out-of-sample element x, its corresponding value y is computed from a kernel projec-

tion onto the eigenvectors of K using kD (Schölkopf and Smola (2001)).

Nyström Method

Our proposed solution to the distance approximation problem is also comparable in

performance to solutions which employ matrix approximation techniques such as the

Nyström method. The Nyström method has been used to speed up the computation of

kernel machines (Williams and Seeger (2001)) and has been used for improved per-

formance in applications such as clustering (Chitta et al. (2011)) and manifold learn-

ing (Talwalkar et al. (2008)). Given an n×n positive definite matrix G and a parameter

m� n, one can use the Nyström method to produce an n×nmatrix G̃+ of rankm that

approximatesG−1. The runtime complexity of producing G̃+ with the Nyström method

is O(m2n). This is asymptotically more computationally efficient than the Θ(n3) run-

time complexity of a standard matrix inversion algorithm.

The input to this calculation is an n × n matrix G and m � n columns sampled

from G, represented as an n × m matrix Gn,m. The m × m matrix Gm,m consists of

the intersection of these m columns with the corresponding m rows of G. The matrix

G̃ ≈ Gn,mG
+
m,mG

∗
n,m is an approximation of G. Analogously, the matrix G̃+ is an

approximation of G−1, and can be computed from Gn,m and the singular value decom-

position of Gm,m = UmΣmU
∗
m. The approximate eigenvalues Σ̃ and eigenvectors Ũ

of G are Σ̃ =
(
n
m

)
Σm and Ũ =

√
m
n
Gn,mUmΣ+

m, respectively. From Σ̃ and Ũ , the

approximation G̃+ = ŨmΣ̃+
mŨ

∗
m of G−1 is computed.
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Kernel Projection Approximation Performance

Method Offline Computation Online Computation

Nyström θ(m2n+mne) θ(ne+mn)

Kernel Semi-least Squares θ(mn2 +mne) θ(me+mn)

Table 1: The variable e is the runtime complexity of the kernel function k and n is the

size of the dataset Q. For the Nyström method, m is the rank of the approximate Gram

matrix inverse K̃+. For the Kernel Semi-least Squares method, m is the size of the

subset R ⊆ Q. Typically m�n.

The Nyström method can be used to create the approximation, β̂ = K̃+kQ(q),

of the standard kernel projection, β = K−1kQ(q), where K is the Gram matrix with

respect to the kernel function k and the training set Q. The complexity analysis of

the kernel projection approximation derived from the Nyström and Kernel Semi-least

Squares methods can be seen in Table 1. For the analysis of the offline computations, we

assume the kernel function k is only computed on entries in the Gram matrix K. The

Nyström method provides computational savings in the offline computation of K−1

whereas the Kernel Semi-least Squares method provides computational savings in both

the offline computation of K+
RQ and the online computation of the kernel empircal map

kR(q) of the subset R ⊆ Q.

10 Experiments

We tested the Kernel Semi-least Squares method on the Sheffield Face Database (Gra-

ham and Allinson (1998)). The face database consists of 564 images of 20 individuals,

covering a mixed range of race, sex, and age. The images of the faces were in range

of poses including profile and frontal views. There were an average of 28 images per

individual. Each picture is approximately 220 × 220 greyscale pixels represented with

256-bits. Example pictures of the individuals in different poses can be seen in Figure 3.

16



Figure 3: Example images from two individuals in the Sheffield Database

We used a type of Hamming distance, h(·, ·), as the target distance. To compute this

distance, two input images are first converted from greyscale to binary. The greyscale

value at every position in the image is set to 1 if it is above a pre-determined thresh-

old, and it is set to 0 otherwise. The Hamming distance is computed by counting the

number of positions where the two converted binary images have different values. Each

individual has a unique threshold, determined by averaging all the greyscale values of

all the individual’s images in the database. This experiment represents the envisioned

application of the Kernel Semi-least Squares method: the distances are expensive to

compute, but, as our experiment shows, they can be isometrically-embedded into a

low-dimensional vector space.

For each individual, we tested the accuracy of the approximate Hamming distance

ĥ(·, ·) using leave-one-out cross-validation. Each image q from the individual’s set of

images Q was removed in turn and from the remaining group, Q/q, the optimal subsets

Rm of sizes m = 1 . . . 10 were computed. Each Rm minimized the cost function of

Equation 21 over all subsets of size m, with the set of candidate subsets being of the

form R = {R : R ⊂ Q, |R| = m}. For each subset Rm of size m, we constructed

an approximate Hamming distance ĥm(·, ·). We used the kernel of Equation 3, with
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Figure 4: The performance of our Kernel Semi-least Squares method for distance ap-

proximation for each subset size. The closeness score was determined using leave-

one-out cross-validation over 20 individuals. There was an average of 28 images per

individual. The error bars represent the standard deviation of the closeness score.

d being the target Hamming distance and with g(·) set to a constant function. We

chose this kernel because it can be seen as a variant of an intersection kernel, which we

have seen has good discriminatory properties. The projection matrix W of the subset

projection used in the distance approximation (Equation 14) was set to 0. The difference

score for each image q removed from the set of images Q, using the best subset of size

m, was

D(m, q,Q) =
1

|Q/q|
∑
q′∈Q/q

∣∣∣ĥm(q, q′)− h(q, q′)
∣∣∣

h(q, q′)
. (31)

The closeness score for each subset size m was computed from the average of the

difference score over all individuals I, with

S(m) = 1− 1

|I|
∑
Q∈I

1

|Q|
∑
q∈Q

D(m, q,Q). (32)
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We computed closeness score for subset sizes 1 to 10. Our results show that a

small subset can be used to approximate the Hamming distance with a high degree of

accuracy, as seen in Figure 4.
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Figure 5: The performance of our Kernel Semi-least Squares method in relation to the

Nyström method in the task of distance approximation. The closeness score was com-

puted using leave-one-out cross validation over 20 individuals. There were 78 images

for each individual. The error bars represent the standard deviation of the closeness

score.

Nyström Method Comparison

We also compared the performances of two solutions to our posed problem of dis-

tance approximation. The first solution applied the Kernel Semi-least Squares method

as described in this chapter. The second solution is identical to the “Kernel Semi-

least Squares solution” except the Nyström method was used to approximate the kernel
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projection, as described in section 9. For the experiments, we used images of faces

from the CMU Pose, Illumination, and Expression (PIE) Database (Sim et al. (2002)).

The database consists of color pictures of faces of individals under different illumina-

tion conditions, poses and expressions. We selected 20 individuals randomly from this

dataset. For each individual selected, a datasetQwas constructed, consisting of 78 man-

ually cropped 150× 250 color images of the person’s face under different illumination

conditions and poses.

For each individual dataset Q, we tested the “Kernel Semi-least Squares solution”

and the “Nyström solution” on the hamming distance h(·, ·) using leave-one-out cross

validation in the same manner as the previous experiment. For each individual dataset,

the optimal subsets of sizes n = 1 . . . 30 were selected using the criteria of section 7.

The results were measured and aggregated over the individuals using the distance

D(m, q,Q) and closeness S(m) scores described earlier in this section. The results,

as shown in Figure 5, indicate the Kernel Semi-least Squares method produced a more

accurate and precise approximation of the target distance than the Nyström method.

11 Discussion

We presented a kernel based solution to the sparse distance approximation problem,

where the given distance metric d is too computationally expensive to compute exhaus-

tively. Our method uses the subset projection to map an observation to the span of a

training set in the kernel feature space. The derivation of the subset projection is derived

by extending Rao and Mitra’s Semi-least Squares problem with kernel methods.

The kernel projection requires the computation of d(x, xi) for each xi ∈ X . In

practice, this distance computation can be prohibitively expensive. Our posed problem

takes this into consideration, with the aim to have less than n computations of d(·, ·).

The goal of our formulation is to compute the distances from a real-time element to

each element in the training set, instead of a general mapping to a low dimensional
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Euclidean space.

A benefit of our method is its simplicity. The distance approximation method can be

described with two equations (Equations 14 and 15). The pre-computing requirements

are light, consisting of evaluation of the kernel function and matrix (pseudo)inverses.

Future work consists of developing a method for training the arbitrary projection

matrix W used in the subset projection. It is an open question how to compute the

optimal subset Ro efficiently. We provide several optimization criteria in Equations 21,

24 and 27, which can be computed via enumeration of all possible subsets of size m.

The more general question of how closely the coefficient vector β in Equation 11 is

approximated by β̂ in Equation 14 remains open.
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